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FOREWORD

ATS-6hasbeen referred to as Arthur C. Clarke's "Star," because Mr. Clarke originated the idea for

synchronous communications satellites in an article that he wrote in 1945. In 1975, Mr. Clarke was

actively engaged in monitoring the Indian Satellite Instructional Television Experiment on ATS-6

and giving feedback to the Indian Space Research Organization. We, therefore, felt that it would be

appropriate for him to contribute the foreword for this report.

An excerpt from his response to our request and selected paragraphs from his contribution, "School-

master Satellite," follow.

FROM THE DESK OF THE CHANCELLOR

UNIVERSITY OF MORATUWA, SRI LANKA

Arthur C. Clarke
B.Sc., F._.A.S., F.B.I.S.

l:cllow of King's College, London.

.n_a_ 7.Tel: 94255
Cable: Undersea "Leslie'a House"

Colombo 25. Barnes Place,
Colombo 7.

24th September 1980

The extracts that follow are from an essay that was written in 1971, almost five years before

the SITE program became fully operational, and originally appeared in the Daily Telegraph Colour

Magazine for 17 December 1971. It was later read into the CongressionalRecord (27 January 1972)

by Representative William Anderson, first commander of the nuclear submarine Nautilus, and now

forms Chapter 12 of The View From Serendip (Random House, 1977; Ballantine, 1978).

To me, it brings back vivid recollections of my meetings with Dr. Sarabhai, the chief instigator

of the program. I would like to dedicate it to his memory - and to that of another good friend, also

closely associated with the project - Dr. Wernher yon Braun.

Chancellor

University of Moratuwa

Sri Lanka

Arthur C. Clarke

Vikram Sarabhai Professor, Physical Research

Laboratory, Ahmedabad

India

xix



SCHOOLMASTER SATELLITE

"For thousands of years, men have sought their future in the starry sky. Now this old super-

stition has at last come true, for our destinies do indeed depend upon celestial bodies-those that

we have created ourselves...

"In 1974 there will be a new Star of India; though it will not be visible to the naked eye, its

influence will be greater than that of any zodiacal signs. It will be the satellite ATS-F (Applications

Technology Satellite F), the latest in a very successful series launched by America's National Aero-

nautics and Space Administration. For one year, under an agreement signed on September 18, 1969,

ATS-F will be loaned to the Indian Government by the United States, and will be "parked" 22,000

miles above the Equator, immediately to the south of the sub-continent. At this altitude it will com-

plete one orbit every 24 hours and will therefore remain poised over the same spot on the turning

Earth; in effect, therefore, India will have a TV tower 22,000 miles high, from which programmes

can be received with almost equal strength over the entire country...

"ATS-F, now being built by the Fairchild-Hiller Corporation, represents the next step in the

evolution of communications Satellites. Its signals will be powerful enough to be picked up, not

merely by multi-million dollar Earth stations, but by simple receivers, costing two or three hundred

dollars, which all but the poorest communities can afford. This level of cost would open up the

entire developing world to every type of electronic communication-not only TV; the emerging

societies of Africa, Asia and South America could thus by-pass much of today's ground-based tech-

nology, and leap straight in to the space age. Many of them have already done something similar in

the field of transportation, going from ox-cart to aeroplane with only a passing nod to roads and

railways.

"It can be difficult for those from nations which have taken a century and a half to slog from

semaphore to satellite to appreciate that a few hundred pounds in orbit can now replace the conti-

nent-wide networks of microwave towers, coaxial cables and ground transmitters that have been con-

structed during the last generation. And it is perhaps even more difficult, to those who think of

television exclusively in terms of old Hollywood movies, giveaway contests and soap commercials to

see any sense in spreading these boons to places which do not yet enjoy them. Almost any other use

of the money, it might be argued, would be more beneficial...

"Those who actually live in the East, and know its problems, are in the best position to appre-

ciate what cheap and high-quality communications could do to improve standards of living and

reduce social inequalities. Illiteracy, ignorance and superstitution are not merely the results of

poverty-they are part of its cause, forming a self-perpetuating system which has lasted for centuries,

and which cannot be changed without fundamental advances in education. India is now beginning a

Satellite Instructional Television Experiment (SITE) as a bold attempt to harness the technology of

space for this task, if it succeeds, the implications for all developing nations will be enormous.

"Near Ahmedabad is the big 50-foot diameter parabolic dish of the Experimental Satellite

Communication Ground Station through which the programmes will be beamed up to the hovering

satellite. Also in this area is AMUL, the largest dairy co-operative in the world, to which more than

a quarter of a million farmers belong. After we had finished filming at the big dish, our camera team

drove out to the AMUL headquarters, and we accompanied the Chief Veterinary Officer on his

rounds.

XX



SCHOOLMASTERSATELLITE

"At our first stop, we ran into a moving little drama that we could never have contrived delib-

erately, and which summed up half the problems of India in a single episode. A buffalo calf was

dying, watched over by a tearful old lady who now saw most of her worldly wealth about to dis-

appear. If she had called the vet a few days before-there was a telephone in the village for this very

purpose-he could easily have saved the calf. But she had tried charms and magic first; they are not

always ineffective, but antibiotics are rather more reliable...

"I will not quickly forget the haggard, tear-streaked face of that old lady in Gujerat; yet her

example could be multiplied a million times. The loss of real wealth throughout India because of

ignorance or superstition must be staggering. If it saved only a few calves per year, or increased pro-

ductivity only a few per cent, the TV set in the village square would quickly pay for itself. The very

capable men who run AMUL realise this; they are so impressed by the possibilities of TV education

that they plan to build their own station to broadcast to their quarter of a million farmers. They

have the money, and they cannot wait for the satellite-though it will reach an audience two thou-

sand times larger, for over 500 million people will lie within range of ATS-F...

"And those who are unimpressed by mere dollars should also consider the human aspect-as

demonstrated by the great East Pakistan cyclone of 1971. That was tracked by the weather satel-

lites-but the warning network that might have saved several hundred thousand lives did not exist.

Such tragedies will be impossible in a world of efficient space communications.

"Yet it is the quality, not the quantity, of life that really matters. Men need information,

news, mental stimulus, entertainment. For the first time in 5,000 years, a technology now exists

which can halt and perhaps even reverse the flow from the country to the city. The social implica-

tions of this are profound; already, the Canadian Government has discovered that it has to launch a

satellite so that it can develop the Arctic. Men accustomed to the amenities of civilisation simply

will not live in places where they cannot phone their families, or watch their favourite TV show.

The communications satellite can put an end to cultural deprivation caused by geography. It is

strange to think that, in the long run, the cure for Calcutta (not to mention London, New York,

Tokyo), may lie 22,000 miles out in space...

"The SITE project will run for 1 year, and will broadcast to about 5,000 TV sets in carefully

selected areas. This figure may not seem impressive when one considers the size of India, but it re-

quires only one receiver to a village to start a social, economic and educational revolution. If the

experiment is as great a success as Dr. Sarabhai and his colleagues hope (and deserves), then the next

step would be for India to have a full-time communications satellite of her own. This is, in any case,

essential for the country's internal radio, telegraph, telephone and telex services...

"Kipling, who wrote a story about "wireless" and a poem to the deep-sea cables, would have

been delighted by the electronic dawn that is about to break upon the sub-continent. Gandhi, on

the other hand, would probably have been less enthusiastic; for much of the India that he knew will

not survive the changes that are now coming.

xxi
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"One of the most magical moments of Satyajit Ray's exquisite Pather Panchali is when the

little boy Apu hears for the first time the Aeolean music of the telegraph wires on the windy plain.

Soon those singing wires will have gone forever; but a new generation of Apus will be watching,

wide-eyed, when the science of a later age draws down pictures from the sky-and opens up for all

the children of India a window on the world."

A. C. Clarke
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INTRODUCTION

ATS-6 was the final satellite in a series of six of the Applications Technology Satellite Program of

the National Aeronautics and Space Administration. It was designed and built by Fairchild Space

and Electronics Company, Germantown, Maryland, under NASA Contract NASS-21100 from

NASA Goddard Space Flight Center.

At the time of its launch, it was the largest and most powerful communications satellite to go into

orbit.

The mission of ATS-6 was to demonstrate and evaluate the application of new technologies for

future satellite systems. This it accomplished by demonstrating the first direct-broadcast television

from geosynchronous orbit; by demonstrating many new communications technologies; by relaying

data from, and tracking, low-orbiting satellites; by relaying communications and positions of ships

and aircraft; and by supporting a variety of other experiments involving communications, meteor-

ology, particle and radiation measurements, and spacecraft technology.

The purpose of this report is to document the lessons learned from the 5-year ATS-6 mission that

might be applicable to spacecraft programs of the future. To satisfy this purpose, the six volumes of

this report provide an engineering evaluation of the design, operation, and performance of the sys-

tem and subsystems of ATS-6 and the effect of their design parameters on the various scientific and

technological experiments conducted.

The overall evaluation covers the following:

• A summary of the ATS-6 mission objectives, operations, and results

A summary description of the spacecraft system and subsystem requirements, the designs

evolved to meet these requirements, and special analyses and ground testing performed to

validate these designs and to confirm the flight integrity of the spacecraft

• A comparative evaluation of the 5-year performance and operations in orbit relative to

those specified and demonstrated during ground tests prior to launch

• A summary of anomalies that occurred in the hardware, probable causes, and recommenda-

tions for future spacecraft systems

• A summary evaluation of the various technological and scientific experiments conducted

A summary of conclusions and recommendations at the spacecraft system and subsystems

levels that address considerations that might be relevant to future spacecraft programs or

similar experiments.

xxi_
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Part A

Attitude Control



CHAPTER 1

ATTITUDE CONTROL SUBSYSTEM

FUNCTIONAL REQUIREMENTS

The attitude control subsystem (ACS) was required to stabilize and orient the spacecraft in response

to ground commands. Upon receipt of the appropriate command sequence, including sensor, con-

troller and actuator selection, and ground coordinate and/or satellite ephemeris data required, the

spacecraft under ACS control was required to:

• Achieve local vertical orientation from an arbitrary initial orientation and rate

• Achieve attitudes and rates necessary to track fixed or moving targets by closed-loop
tracking

• Achieve attitude and rates necessary to produce prescribed point-axis (Z-axis) motions by
closed-loop following of ground commands.

In addition, the spacecraft ACS served as a test bed for the Spacecraft Attitude Precision Pointing

and Slewing Adaptive Control experiment wherein telemetered ACS sensor data was processed on

the ground; the results of that processing were commands issued to the ACS torquers.

Initial acquisition modes included rate damp, Sun acquisition, Earth acquisition, and Polaris acquisi-

tion. Closed-loop tracking modes included station-point and satellite-track modes. Closed-loop com-

mand following modes were local vertical, offset point, reference orientation, slew maneuver, satel-

lite track, antenna pattern, and low jitter modes. The most important operational modes, the space-

craft reference axes/angles, and the design goals are defined in Figure 1-1.

Low jitter was an operational mode that for limited time periods maintained extremely low space-

craft tracking error angles and tracking error rates. In the antenna-pattern mode, the spacecraft Z-

axis traversed a cloverleaf pattern by following a self-contained preprogrammed sequence of slew
maneuvers.

DESIGN DESCRIPTION

Introduction

Honeywell Inc. designed and manufactured the attitude control subsystem under the direction of

the prime contractor, Fairchild Space and Electronics Company.

The attitude control subsystem was divided into three main categories: sensors, controllers, and
torquers as shown in Figure 1-2.
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Suitable sets of components were used to achieve the various ACS modes.

A block diagram of the acquisition control modes is shown in Figure 1-3. The sensors used are

shown in their order of use. The rate gyro assembly (RGA) provided rate damping signals. The

coarse and fine Sun-sensor signals were used to acquire the Sun. The Earth sensor was used for

Earth acquisition and provided the desired local vertical reference (roll/pitch) for subsequent

operational control modes. The digital Sun sensor (DSS) was used to position the spacecraft pitch

axis near the orbit normal until final referencing by the Polaris sensor assembly (PSA) was possible.

Subsequently, the Polaris sensor was used to provide a reference for the control of the yaw axis.

The very high frequency (vhf) monopulse provided a backup capability for roll and pitch acquisi-

tion of the Earth. A standby yaw inertial reference unit (YIRU) provided yaw hold capability. The

acquisition modes used the propulsion system for torquing the spacecraft and the inertia wheels for

subsequent attitude holding after each of the acquisitions. Backup control modes at reduced power

levels included an analog backup controller (ABC) and ground command of the spacecraft propul-
sion subsystem (SPS) jets based on telemetered sensor data.

The block diagram of Figure 1-4 shows the primary operational control modes and the mode in

which each of the sensors could be used. Only one of two digital operational controllers is shown;

however, a duplicate set of interfaces was provided so that either controller could perform the func-

tions. The inertia wheels were the prime means for torquing the spacecraft with the propulsion sub-

system providing torques for unloading the wheels. The SPS was also capable of supporting all

modes, except for low jitter, without the wheels. For orbit control, the SPS was the prime means
of producing torque.
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Components

Sensors

Rate Gyro Assembly-The two assemblies of three single-axis gyros were referred to as RGA 1 and

2. They were used during the acquisition modes for rate damping and rate compensation. Each

RGA consisted of three spring-restrained rate gyros mounted in an orthogonal frame to sense pitch,

roll, and yaw spacecraft rates. Each RGA also contained power monitoring and conversion electron-

ics, and signal conditioning electronics to provide the necessary interface between itself and the

ABC, digital operational controller (DOC), data acquisition and control units, and command/

decoder distributor (CDD).

The RGA provided roll, pitch, and yaw analog rate signals to the DOC's and ABC, which were pro-

portional to the angular rates about each of the three mutually perpendicular axes. Outputs from

each gyro had a linear range of -2.0 to +2.0 degrees per second with a scale factor of 2.5 volts per

degree per second. Nominal zero uncertainty of each gyro was 0.05 degree per second maximum

with a threshold and resolution not to exceed 0.01 degree per second.

Output signals were also conditioned and provided for telemetry, and each direct current (d.c.)

analog rate signal was level shifted and scaled for the 0 to 5 Vdc telemetry. The telemetry scale

factor was 1.5 volts per degree over -1.0 to +1.0 degree per second and 0.25 volt per degree out to

+5 degrees per second. A single spin motor sync detector was developed for all three gyros and the

discrete signal provided as long as all three were synchronous. Mechanical stops limited the sensing

gimbal movement to less than 5 degrees deflection, corresponding to a rate of 40 degrees per second.

If the two RGA's were both on, the output of the two were averaged, because the output of both

RGA's were cross-strapped, and the gain was approximately 15 percent greater than for a single

gyro.

Coarse�Fine Sun Sensors-Coarse Sun sensors (CSS) were used in initial acquisition to provide all

attitude information with respect to the Sun line to allow the attitude control subsystem to roughly

position the +X or -X axis of the spacecraft in the direction of the Sun line.

Fine Sun sensors (FSS) took over from the CSS when the spacecraft +X (or-X) axis was within +8

degrees of the Sun line. The FSS provided pitch and yaw error signals prior to the acquisition of

Polaris in the analog backup controller mode.

Coarse Sun Sensor Assembly-The coarse Sun sensor assembly was a two-axis device that

measured the angular displacement of the Sun line from the spacecraft in the X-Y and X-Z

planes. The CSS's were used to control the X-axis of the spacecraft to within approxim-

ately eight degrees of the Sun line during acquisition of the Sun. Four CSS assemblies were

used in the attitude control subsystem (ACS). Two of the four assemblies were mounted

on the Earth viewing module (EVM), one on the +X and the other on the -X side, and the

other two assemblies were mounted on the hub as shown in Figure 1-5. The two EVM

assemblies consisted of three sensing elements, and the two hub assemblies consisted of
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Figure 1-5. Sun Sensor Configuration

two sensing elements each. Silicon photovoltaic diode eyes were used for sensing elements

in each of the CSS assemblies. The field of view of each eye was normally a hemisphere;

however, masking was used to restrict the field of view, so that reflections would not be

seen from the reflector or solar arrays. Each eye provided an analog output signal to the

Sun sensor electronics assembly that was related to the angle between the Sun line and a

vector normal to the sensor. When used in conjunction with the electronics, the output

from two differentially connected eyes provided a null when the Sun was at equal angles

relative to each of them. The total field of view provided by all the coarse eyes was 4 _r

steradians.

Fine Sun Sensor Assembly-Two fine Sun sensor assemblies were used by the ACS. (3ne

was aligned along the spacecraft +X axis and the other was aligned along the spacecraft

-X axis. These assemblies also measured the angular displacement of the Sun line from

the spacecraft X-Y and X-Z planes but to a greater accuracy than the CSS. Each FSS

assembly consisted of silicon photovoltaic diode eyes and one target eye as shown in

Figure 1-5. Two eyes were summed differentially to provide yaw attitude information and
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two to provide pitch attitude information. The fifth eye was a target eye that detected the

presence of the Sun and switched control from the CSS to FSS when the Sun was within a

+9-degree field of view. The field of view of both the pitch and yaw eyes was -+15 degrees;

however, the signal to the controller was limited to -+6.7 degrees in pitch and -+12.3 degrees

in yaw.

Sun Sensor Electronics Assembly-The Sun sensor electronics assembly was used to proc-

ess the pitch and yaw signals for the coarse/fine Sun sensors. The electronics interfaced

with the CSS and FSS assemblies to provide analog output signals that represented the

angular deviations from null in the pitch and yaw axes. The unlimited outputs, which were

fed to the data acquisition and control unit for telemetry, had a range of -+50 degrees in

the nonsensitive axis. Limited outputs of -+12.7 degrees in yaw and 6.7 degrees in pitch,

were fed to the digital operational controller and the analog backup controller. The FSS

target eye Sun-presence indication was used by the Sun sensor electronics assembly to

switch outputs to the controllers from the CSS to the FSS.

Digital�Auxiliary Digital Sun Sensor-The digital Sun sensor (DSS) provided discrete information

that defined the Sun vector relative to the spacecraft. The digital Sun sensors and their associated

electronics were used by the digital operational controller to provide the proper Sun-bias error sig-

nal during Polaris acquisition and also for yaw backup control.

The auxiliary digital Sun sensors (ADSS) provided telemetry information only and defined the Sun

vector information primarily in the areas not covered by the DSS.

Digital Sun Sensor Assembly-The DSS used on ATS-6 measured two angles in orthogonal

planes that described the vector from the DSS to the Sun. Each sensor had two quartz

reticle blocks oriented orthogonally that produced a coded light pattern on the photocells

located behind the reticles. The DSS is shown in Figure 1-6. The DSS quantized the field

of view into 256 elements that covered a field of view of -+64 degrees about each slit, giving

a resolution of approximately 0.5 degree over the entire field of view. However, the tran-

sition accuracy of each bit was approximately -+0.10 degree out to -+30 degrees. Since the

material used in the sensor between the slit and the coded pattern had an index of refrac-

tion other than one, a cross-coupling effect was produced. The cross-coupling effect was

the greatest toward the limit of the field of view of the sensor where the two angles were

equal.

The digital Sun sensors were mounted on the +X and -X sides of the service module.

Because of the requirements for masking the DSS, the operational field of view was limited

to 40 degrees up (-Z direction) and 64 degrees down in the pitch axis.

The output of the DSS came from the photocells via amplifiers into buffer storage. The

output of the buffer was a Gray code pattern that permitted only one bit to change for

each unit angle change.
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The DSS electronics provided for parallel transfer of attitude data to the data acquisition

and control units (DACU) and nondestructive serial data transfer to the DOC's. The elec-

tronics selected which DSS data was to be transferred to the DACU's and DOC's depending
on the sensor being illuminated.

Auxiliary Digital Sun Sensors-The auxiliary digital Sun sensors (ADSS) system consisted

of three sensor heads mounted in conjunction with the DSS to provide 4 lr steradian cover-

age. One of the ADSS was mounted on the north solar array boom and was aligned along
the -yaw (-Z) axis. The other two sensors were mounted on +Y and -Y sides of the service

module; however, they were inclined 31 degrees toward the +Z axis of the spacecraft. The
ADSS was used primarily for determining attitude; i.e., to find the direction of the Sun

line with respect to ATS. The ADSS quantized the field of view into 128 elements that

covered a field of view of -+64 degrees about each axis for a resolution of 1.0 degree.

Earth Sensor Assemb/y-The Earth sensor assembly (ESA) was used to provide Earth reference data

to the ACS. The ESA provided the primary pitch and roll inputs for all operational modes of the

attitude control subsystem. The ESA consisted of a pitch sensing head, a roll sensing head, and

associated electronics. Each sensing head consisted of an Earth sensing bolometer-telescope, a Sun

sensor, a scan mirror, an offset mirror and an electronic package that provided the drive circuits for

the mirror torquers and the output quantities. The Earth sensor was mounted on the Earth-facing

end of the spacecraft and looked along the +Z-axis.
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The sensor heads scanned the Earth disc in two dimensions to obtain measurements of pitch and

roll attitudes of the spacecraft (Figure 1-7). From synchronous orbit, the Earth subtended an angle

of 17.4 degrees. The two head scans were 26 degrees and provided excess coverage in each axis.

The Earth sensing bolometer-telescopes had an instantaneous field of view of approximately 0.6 X

0.1 degree. The scan mirrors were motor driven back and forth at 4 Hz to provide a scanned field of

view of + 13 degrees. The scan mirrors could also bias the + 13-degree scan during offset pointing so

that the scan remained centered on the Earth in the sensitive axis. The maximum amplitude of this

scan bias was + 11.25 degrees. In addition to the scan bias in the scan plane, an offset mirror was

provided that caused the scan to be offset in a direction perpendicular to the scan plane. The scan-

plane offset was required during offset pointing operations so that the scan plane was along the

maximum chord of the Earth. Thus, for pitch-offset point (off the local vertical) the pitch-scan

mirror was biased by the desired amount, and the roll-offset mirror was also biased or offset by the

same amount.
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Figure i-7. Earth Sensor Assembly



14 ATS-6 FINAL ENGINEERING PERFORMANCE REPORT

The scanning and offset mirrors were positioned by dc bias voltages that were developed by a digital-

to-analog (D/A) converter in the Earth sensor assembly electronics to keep the + 13-degree scan

centered on the Earth disc. These dc bias voltages were also provided to the analog backup control-

ler where they were used to control the roll and pitch axes in analog backup controller (ABC) con-

trol modes. Since the ABC did not provide an offset pointing capability, the bias would always be
operating near null for these control modes.

The digital error, which was a representation of the Earth sensor attitude angle, was derived in the

following manner. During the scan of the instantaneous field of view, pulses out of an encoder

mounted on the scan mirror were gated into an up/down counter based on:

• Space-to-Earth crossing

• Center crossing on the encoder (Z-axis null plane)

• Earth-to-space crossing.

For the off-local-vertical case, counting started from the space-to-Earth crossing, reversed sign at"

the center crossing, and stopped at the Earth-to-space crossing. If r is the Earth radius in counts,

x is the number of counts between center crossing and the Earth-to-space crossing, and e I is the
attitude angle in counts, then the counter contents up to center crossing were r+ (r-x). As indi-

cated, the counter logic from center to Earth-to-space crossing subtracted x; therefore, at the end
of a scan across the counter held:

r + (r-x)-x = 2r-2x = 2e1

The scan back added 2e, ; therefore, at approximately 0.25-second intervals, an attitude angle of 4e_
was available from the counter.

The avoidance of Sun interference in the Earth sensor was automatically achieved by offsetting the

scan plane away from the Sun disc while still scanning through a sizeable portion of the Earth chord.

To accomplish this, each Earth sensing element was equipped with a dual-cell Sun sensor that was

aligned with the bolometer and had a sensing field radius of 3 degrees, which was concentric with

the bolometer field of view. When Sun presence was detected, the split detector provided logic to

offset the scan plane (by biasing the offset mirror) to minimize Sun interference. The maximum

offset was 3.5 degrees of bias, at which point, if Sun presence was still detected, the scan automat-

icaUy switched to an opposite polarity offset to get behind the Sun.

Yaw Inertial Reference Unit-The yaw inertial reference unit (YIRU) provided a functional backup

to the Polaris star tracker. Late in the design of the attitude control subsystem, it was decided to

substitute the YIRU for the Polaris sensor assembly 1 (PSA 1) to provide functional redundancy

instead of standby redundancy for yaw sensing. The YIRU measured yaw angles to the following
accuracies over a 1-hour period:

Goal: -+0.25 °

Spec: -+0.5 °

Worst Case: -+1.0 °
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The YIRU was capable of providing yaw sensing during acquisition or operational modes with either

the digital operational controller or the analog backup controller.

The YIRU assembly consisted of a single-degree-of-freedom gas-bearing gyro with a fluid supported

and damped float and an interface electronics box that was designed and built at Goddard Space

Flight Center. The float was magnetically suspended in its bearings. The gyro package contained the

rate integrating gyro and associated electronics packaged in one sealed container that was filled with

helium for thermal reasons. The interface electronics box contained the electronics that provided

the interfaces between the attitude control subsystem and the gyro package. Figure 1-8 is a func-

tional block diagram of the YIRU. The three operational modes of the YIRU were: uncage, cage,

and torque.

In the uncage mode, the gyro was uncaged and would measure the inertial position deviation (posi-

tion error) from a reference point about the yaw axis. The gyro could be placed in this mode by

command without putting it in control of the spacecraft. The gyro could maintain spacecraft refer-

ence over + 1.2 degrees minimum deviation from null. The + 1.2 degrees was deterr_ined by the gyro

stops and by float damping, hence gyro temperature. The maximum spacecraft stop angle was +3.9

degrees. The uncompensated drift in this mode could not exceed 0.3 degree per hour.

In the cage mode, the gyro torquer was driven by the gyro signal generator and effectively reset

the gyro to a null position. This mode (followed by uncaging) was used to establish a new reference

position (e.g., just prior to the Sun moving out of the digital Sun sensor's field of view with the

digital Sun sensor providing yaw attitude control). It was used as a standby mode when the gyro

was not controlling.

There were two torquing modes of the YIRU. Upon receipt of a high-torque command from the

ground, the YIRU could be torqued at a rate of 0.33 degree per second. The direction of gyro tor-

quing was established by a high torque plus or minus polarity command. This torque rate was

stopped by the high-torque-off commands. When the high-torque-off command was sent from the

ground, it not only stopped the high torquing of the gyros, but it incremented the gyro reference

by approximately 0.035 degree. The high-torque-off command generated a 100-miUisecond pulse to

the torquer and moved the float 0.035 degree each time it was issued. By issuing high-torque-off

commands, the YIRU could be referenced in +0.035 degree increments. The polarity of the re-

referencing pulses was determined by the high torque plus or minus commands.

Drift compensation torquing provided a means for trimming the gyro drift in orbit. The gyro drift

was sent to the spacecraft in a five-bit command word that was stored by relays in the interface elec-

tronics box. The digital word was then converted to an analog current within the gyro and fed to the

gyro torquer. The total drift compensation capability was + 1.5 degrees per hour with a resolution of

0.1 degree per hour. This drift-compensation command was set and stored in the interface electronics

box, and the YIRU was torqued at this rate whenever it was in the uncaged, or attitude mode.

The YIRU normally was used as a backup to the Polaris tracker (PSA 2) except after initial Sun and

Earth acquisition when the YIRU maintained the yaw attitude reference until subsequent Polaris

acquisition was commanded. When used as a backup in the reference-orientation mode (using the
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digital operational controller), the YIRU presented no special operational problems except to update

the yaw reference once or twice per day with the DSS and to recompensate the gyro when the drift

exceeded -+0.15 degree per hour. However, when the spacecraft was performing an offset pointing

so that the yaw axis was no longer in the orbit plane, the YIRU would sense a component of the

Earth's rate that was a function of the angle between the Z-axis and the orbit plane. The YIRU

could be compensated for this effect with the drift bias compensation term (+-1.5 degrees per hour)

up to an angle of approximately 5 degrees. Beyond this the YIRU re-reference command (0.035

degree per pulse) had to be used to compensate the YIRU.

Polaris Sensor Assembly-The Polaris tracker and associated electronics were used by the attitude

control subsystem. The Polaris sensor assembly (PSA) was used during Polaris acquisition modes

and served as the primary yaw sensor for all operational and most experimental modes. The PSA

was mounted with its optical axis parallel to the -Y axis of the spacecraft. The total field of view of

the Polaris tracker was approximately 9 degrees in yaw by 28 degrees in roll. The sensor provided

an analog output signal that was linear over a range of about +3.5 degrees and was in a saturated

condition range to about +4.5 degrees. The analog output voltage was proportional to the angle

between the line of sight to Polaris and the plane containing the Y-Z axes of the sensor.

The images of any objects within the field-of-view limits were formed by the objective lens on the

image dissector tube photocathode. The emitted photoelectrons were accelerated and imaged by

the focus potentials into, or through, a conducting, grounded aperture plate that separated the

focusing section from the dynode multiplier section. The electron image of the field-of-view was

scanned by the aperture plate by the application of a saw-tooth voltage to the electron yaw-angle

deflection plates in the tube image section. Demodulation of this signal, after further amplification,

provided a signal whose time-averaged amplitude and polarity was related to the mean star position

offset from the center of the electron aperture. This current signal was summed in an intergrator,

amplified, and fed back to the yaw-angle deflection plates. This completed a control loop that

nulled the mean star position on the electron aperture plates. The star yaw-angle offset was then

directly proportional to the offset (tracking) voltage that maintained the null position. This voltage

was provided to the attitude control electronics as a yaw-angle signal to be used for yaw stabiliza-

tion of the spacecraft.

Prior to star acquisition, the field of view (FOV), which is the image of the electron aperture

projected forward through the objective lens, was biased to the limiting yaw angle (+4.0 degrees,

+0.5 degree) or acquisition bias position. If a star entered the FOV and exceeded the threshold of

the intensity magnitude gate, the bias signal was then removed from the deflection plates and the

FOV was allowed to track the star. In the event of loss of acquisition, a flyback and sweep search

of the entire yaw angle FOV (-+4.5 degrees maximum) was made automatically in an attempt to

reacquire. If the search was not successful, the FOV would return to the acquisition bias position.

Identification of Polaris was made on the basis of the modulated and amplified signal that was

remodulated and summed to provide a signal, with a narrow noise bandwidth, related to the inten-

sity of the star illumination. This signal provided the reference for the voltage supply that fed the
i

dynode multiplier structure. This completed an automatic gain-control loop that provided a constant
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tube modulated output over a wide range of star intensities. Star intensity information was obtained

from the dynode voltage supply and was compared against low-brightness limits (gates) for an

identification decision. If the decision was affirmative, an acquisition signal was provided to the

attitude control electronics and the FOV would track as previously described. If no star met the

brightness criteria, the FOV would remain in the search position. Signals might be sent to the PSA

that stepped the low gate to a lower value. Subsequent signals would set the low gate to a still lower

value, then reset it to the original level and recycle. The acquisition of a star satisfying the bright-

ness gates initiated logic that maintained track until such time as the FOV became dark enough to

fall below the drop-out level of the effective low gate.

The roll-angle deflection plates in the image dissector tube were used to provide five discretely-

stepped, roll-angle offsets in the F0V to follow the variation in roll angle of Polaris due to space-

craft roll maneuvers. Pulse commands sent to predetermined Polaris sensor assembly input pins
stepped the FOV.

A Sun detector mounted to the baffle assembly activated the Sun shutter when the spacecraft

became oriented in such a way as to allo_'v sunlight to enter the tracker optics.

Interferometer Sensor-The interferometer was a precision, wide field-of-view attitude sensor for

the spacecraft attitude control subsystem. It used six antennas on board the spacecraft, placed in

the Earth-viewing surface of the EVM with three each arranged in lines parallel to the pitch and roll

axes. The three pitch-sensitive horns and three roll-sensitive horns, which received C-band signals

from continuously transmitting ground stations, were spaced to give phase information from a

closely spaced pair and from a widely spaced pair in each axis. After measuring the phase differences

received at paired antenna elements, the interferometer converted this information into digital data

related to spacecraft attitude angle.

The basic equation used to convert the measured phase difference, % between the received signals

with wavelength, X, at two antennas separated by distance, D, into the incidence angle, 0, was:

Thus, the transfer characteristic was a fixed relationship between the digitized electrical phase angle

and the spatial spacecraft attitude angle. It should be noted that the relationship was trigonometric

rather than linear. The coarse and vernier baseline distances, D, in terms of signal frequency were

1.66 )_ and 19.95 )_, respectively. It can be sedn that the coarse characteristic was unambiguous

(single-valued) over a field of view of +17.5 degrees; twelve times larger than the vernier's unambig-

uous field of view. It was this feature that allowed the use of the high resolution vernier outputs,

without ambiguity, over the full coarse unambiguous field of view (when the coarse field of view

itself was known). An angular resolution 0.017 degree was provided for the coarse mode and 0.0014

degree for the vernier mode.
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There were four commandable modes of operation:

• Vernier or coarse or both outputs

• Roll or pitch or both axes outputs

• Operating frequency fl or f2 or both

• Baseline phase reversal (for calibration).

A single ground station provided two-axis sensing (pitch and roll) while for three-axis sensing with

computed yaw, two ground stations were required. In the single-frequency mode, the interferom-

eter could be directly connected to the attitude control subsystem. In the baseline calibration mode,

phase readings (phase and phase reversal) were taken over two diagonal baselines, thus providing

in-flight calibration. Nominally, the ground sources were the same NASA stations provided for the

communications experiments.

The rf interferometer consisted of four functional assemblies:

Antenna Array-The antenna array, mounted on the Earth-viewing surface of the Earth-

viewing module, consisted of two orthogonal baselines, each baseline being orthogonal to

the yaw angle of the spacecraft.

Receiver-A two-channel receiver was provided, with one channel for the reference signal

and one for the comparison signal. A coupler/switch module provided for time division

multiplexing between the signals from the coarse and vernier antennas. The first local

oscillator converted the signals down to 150 MHz. The signals were then applied to the

second mixer where a 2-kHz frequency difference was introduced by the dual local oscil-

lator. Two signal paths, offset by 5 MHz, provided for simultaneous two-frequency opera-

tion. The outputs of the receiver system were low-frequency signals (2 kHz) which had

preserved the phase relationship of the microwave signals received at the antennas.

Spacecraft Data Converter-The interferometer data converter measured the phase relation-

ship of the receiver output signals with respect to a coherent reference signal and converted

these measurements to digital form that could be telemetered to the ground or connected

to the attitude control subsystem. A complete measurement could be made every 230

milliseconds and telemetered once every three seconds.

Interferometer High Speed Data Link (IHSDL)-The IHSDL was the resultant output of

the digital converter phase-count gate and a 4-MHz oscillator. These were combined to

yield clock pulses proportional to the detected phase of the interferometer responses to

angular offsets (255 clock pulses equal 360 degrees). The waveform was a pulse-width

modulated signal burst at a 1-kHz sample rate. The spacecraft IHSDL output was con-

tained in a 300-kHz to 1-MHz base bandwidth that was diplexed on a dedicated 1-MHz
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bandwidthchannelwith the very high resolutionradiometer (VHRR) (Figure I-9) con-

verted up to 4 GHz (C-band) and transmitted on the downlink. The IHSDL could respond

to a maximum 500-Hz jitter frequency that could be read on the ground in real time or
recorded on tape and processed at a later time.

A summary of interferometer characteristics follows:

Type of Receiver

Input Frequency

Noise Figure

Vernier Baseline

Coarse Baseline

Configuration

Antenna Gain

Angle Accuracy (pitch, roll)

Antenna Element

First I.F./I.F. Bandwidth (BW)

Second I.F./I.F. BW

Output Frequency/BW

First Local Oscillator (LO)

Frequency

Second LO Frequency

Post-Filter SNR

Vernier Clock Frequency

Coarse Clock Frequency

Counter Input Rate

Vernier Averaging

Telemetry Output

Weight

Power

Dual conversion, dual channel

Switched antenna elements

6.150 and 6.155 GHz

15 dB

97.262 cm (38.292 in.) (19.95 X)

8.105 cm (3.191 in.) (1.66 X)

Crossed baselines

+12 dB

0.018 ° (3o) over +12.5 ° angle range

0.025 ° (3a) over +30 ° angle range

Compensated horn

150 MHz/15 MHz

(Dual) 32.5 MHz and

27.5 MHz/1 MHz

2 kHz/600 Hz

6.000 GHz

122.5 and 122.502 MHz

+41 dB at +73 dBW ground e.i.r.p.

1024 kHz

1024 kHz

2 kHz

64 samples

Digital 72 bits/3 sec (1 or 2 sta modes)

53.8 kg (18.5 lb)

15.5 watts

Monopulse-The communication subsystem's C-band, S-band, or vhf monopulse provided error

signals to the attitude control subsystem (ACS) that were proportional to the tracking error in the

pitch and roll planes of the prime focus feed antenna. The basic characteristics of these error signals
are listed in Table 1-1.
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Table 1-1

Monopulse Error Characteristics

(Design Requirements)

Freq.

Scale

Factor

(V/deg)

Off- Off- Off-

Rms Boresight Boresight Boresight

Noise Linearity Saturation Roll-Off

at Null Angle Angle Angle

(mV) (deg) (deg) (deg)

Vhf 1.0 +10 +3 +7.5, +0.5 +-11.0

S-band 8.0 +10 +0.25 +0.67, +0.1 +1.0

C-band 24.0 + 10 +-0.1 +0.23, +0.05 +-0.35

The error signals were linear with the given scale factor to within +-5.0 percent out to the indicated

off-boresight linearity angle as a minimum. The rms noise level at null related to the same scale

factor. A smooth, continuous error signal versus the angle off boresight was provided from this

linearity angle point to the off-boresight saturation angle point within the given tolerances. The

error signal from this angle point to the roll-off off-boresight angle point as a minimum was fiat or

monotonically increasing at 6.5 volts +-0.5 volt level. The signal characteristics in orbit for the vhf

monopulse differed significantly from the design values given in Table 1-1; however, a viable atti-

tude control subsystem station pointing mode was demonstrated with the vhf monopulse.

Controllers

The onboard controllers were the two digital operational controllers and the analog backup con-

troller. A control mode was also provided using telemetered sensor data and ground control of the

momentum wheels or jet torquers by command.

Digital Operational Controller-Two digital operational controllers (DOC) were provided in the

attitude control subsystem (one primary and one backup). They were each 26.9 cm (10.6 in.) wide

by 30.5 cm (12 in.) long by 15.2 cm (6 in.) high with a 5 cm (2 in.) connector plate and weighed

10.6 kg (23.4 lb) nominal. Each DOC required 27.2 watts nominal at 30.5 Vdc and were protected

for overvoltage, undervoltage and overcurrent.

The operations personnel at ATSOCC chose the controller to be used. The digital operational con-

troller served as the prime controller for all modes of operation (Figure 1-10). In addition to per-

forming control loop computations for stabilizing the spacecraft, the DOC provided the following
functions:

• Accepted a wide variety of sensor inputs, computed the control commands, and com-

manded torquers for all modes
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SENSORS

RGA

C/FSS

O$$

ESA

VHF, S, C, MONO
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PSA

YIRU

UPLINK DATA

MODE COMMANDS

DATA BLOCKS
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DIGITAL DATA
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DOC

• MODE & EXECCONTROL I/O

• ACQUISITION MODE

CONTROL

I/O • OPERATIONAL MODE

CONTROL

• UPLINK & DOWNLINK

DATA PROCESSING

• SELF-TEST

i

I
I i

ANALOG AND

-_

DIGITAL DATA

TORQUERS

IN[_ RTIA WHEELS

AC JETS

DOWNLINK DATA

STATUS

SELECTED PARAMETERS

MEMORY DUMP

Figure1-10. DOC Modesof Operation

• Executed acquisition logic to acquire the Sun, Earth, and Polaris

• Accepted commands for offset pointing (angle and ground coordinate commands)

• Computed compensations required for pointing commands to account for orbit eccen-

tricity, orbit inclination, and Polaris diurnal motion

• Computed commands for performing Z-axis tracking of a low altitude satellite based on

transmitted ATS and satellite ephemeris data

• Computed commands for performing slew maneuvers for antenna pattern measurements

• Provided a self-test routine within the DOC.

The basic DOC was a digital computer and consisted of a power supply, central processor, a mem-

ory, and an input/output section (Figure 1-11). The DOC provided for transfer of blocks of data

to the telemetry data acquisition and control unit or complete data transfer from memory on com-

mand from the ground station. In addition, the DOC could be reprogrammed in orbit (a vital capa-

bility used a number of times during the ATS-6 mission) by changing instructions stored within its

memory on commands from the ground controllers.
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The heart of the DOC was the central processor that performed programs stored within the memory.

The input/output electronics accepted both analog and digital signals and could supply monitoring

signals to telemetry, and control signals to sensors and to the actuator control electronics (ACE)

for controlling the momentum wheels and torquing jets. The features of the central processor and
memory are as follows:

Central Processor

• Four-bit byte serial machine organization

• Sixteen-bit word, two's complement arithmetic

• Two full-word arithmetic registers

• Provided memory with only 5-microsecond cycle time and 1.0-microsecond access time

• Memory addressing to 32 sectors (16,384 words)

• 512-word memory sectors

• Multilevel indirect addressing and indexing

• 40 instructions

• Most instructions executed in 10 microseconds

• Hardware multiply, 90 .microseconds

• Hardware divide, 160 microseconds

• Crystal oscillator frequency reference, 2 MHz

Memory Description

• Hated wire (5 mil)

• Word organized, random access, nonvolatile, nondestructive readout

• Data output register-data input and address register not required

• Access time less than 1.0 microsecond

• Storage capacity 4096 words (16 bits) _th growth capability to 8192 words with no
increase in size

• Sector 00 alterable; sectors 01 through 07 normally read only sectors; however, 00, 02 to

07 could be altered in flight
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A DOC contained a 4096-word by 16-bit memory. The programmable central processing unit served

as a key element in the attitude control subsystem (ACS). The flight computer program (FCP)

handled all the ACS control modes (Figure 1-12). In addition, the FCP could test the DOC and

memory.

A subset of the FCP was the telemetry service program. This program could be commanded from

the ground station to telemeter various DOC status words and core contents, including a full mem-

ory dump.

The DOC could also be reprogrammed or reloaded from the ground station by an input data block.

Input data blocks were groups of commands received by the command service program from the

command/decoder distributor, and decoded as data words. Thus, DOC data could be updated by

the normal ATS-6 command system. Besides rewriting memory, data words representing ephemeris

data, rate biases, interferometer counts, or sensor misalignments could be updated.

FLIGHT COMPUTER PROGRAM
COMPUTER EXECUTIVE

SYSTEM PROGRAM

CESP

• POWER-UP INITIALIZATION

• RTI SERVICING
• CONTROL CSP
• START .1 SEC. CONTROL PERIOD
• FAULT STATUS WORDS
• STATUS MAINTENANCE
• PSA ROLL STEP COMMANDS
• ESA TIMER
• TIME DEPENDENT POSITION PARAMETERS
• AUTO. SEQUENCING OF ACQ. MODES

• SELECT DACU
• CONTROL TSP
• CONTROL (OGP OR AGP)

I
COMMAND

SERVICE PROGRAM
CSP

INTERFACE WITH CDD
DECODESOFTWARE
COMMANDS AND
DATA FROM THE
GROUND

OPERATIONAL
CONTROL PROGRAM

OCP

• ATTITUDE CONTROL
STABILIZATION &
POINTING

• OPERATED EVERY
0.1 SEC.

• 9OPERATIONAL
CONTROL MODES

I
SELF-TEST
MEMORY

CHECKSUM

SECTOR 1-7 MEMORY
CHECKSUM
CPU FUNCTION TEST
ALL DEVICES READY
ABSENCE OF ACQUISITION

FCP NOT COMPLETE

TELEMETRY
SERVICE PROGRAM

TSP ACQUISITION ]
I CONTROL PROGRAM

ACP

• TRANSMIT • COMPUTATION &
COMMANDED DATA OUTPUT OF CONTROL
BLOCKS TO GROUND COMMANDS

• INTERFACE WITH • 6 MODES OF
TELEMETRY OPERATION
SUBSYSTEM • INTERFACE WITH RGA,

CIFSS, DSS, ES
VHF MONOPULSE

Figure 1-12. Flight ComputerProgramOrganization
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For each DOC, there were 12 input and 5 output data block types. Telemetry for DOC 1 appeared

on channel 33 and for DOC 2 on channel 34. The DOC's could effectively subcommutate their own

channel, using software.

The DOC was a commandable element of ATS-6. By the use of commands, instructions and param-

eters were fed to the DOC. The type of information the DOC was to telemeter back was also selec-

table. The mode and sensor select commands are shown in the following listing:

Mode Commands

16 Prime Mode Rate damp, normal

Rate damp, yaw inhibit

Positive X Sun acquisition

Negative X Sun acquisition

Earth acquisition

Polaris acquisition

Local vertical, orbit plane east

Offset point, ground coordinate

Offset point, angle point

Station null point

Antenna pattern, 5 degrees

Antenna pattern, 3 degrees

Satellite track

Low jitter mode

Offset point, control slew

Local vertical, orbit plane, east/west

12 Secondary Mode Select DACU 1

Select DACU 2

Select wheels

Select jets

Select fine deadband

Select coarse deadband

Auto acquisition sequence disable

Auto acquisition sequence enable

Fault override disable

Fault override enable

Unlatch faults

Latch faults

13 Sensor Select Commands Earth sensor, acquisition required

Earth sensor, acquisition not required

Interferometer

Vhf monopulse
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Mode Commands

13 Sensor Select Commands

(continued)

S-band monopulse

C-band monopulse

YIRU, control required

YIRU, control not required

PSA 2, acquisition required

PSA 2, acquisition not required

DSS, yaw backup

DSS for Sun acquisition

Analog Sun sensor

DOC commands consisted of the following:

Function Commands Data Commands

On/off

Primary modes (16)

Secondary modes (12)

Sensor select (13)

Output data block select (5)

12 input data blocks

(specifies such data as

ephemeris, misalignments,

biases, ground coordinates, etc.)

All commands going to the DOC were routed by the command decoder and distributor. Telemetry

data leaving the DOC was formatted into the telemetry stream by the data acquisition and control

unit. The DOC flight computer program had a command service program to assemble data going

to telemetry via the data acquisition and control unit.

1. DOC Capabilities-The DOC was the primary controller for all normal modes of operation for

the attitude control subsystem. The DOC had the following capabilities:

• Iteration Rate-The iteration rate for the DOC was 0.100 second.

• Input/Output-

- Priority interrupt

- Five input/output instructions

- Parallel word transfers (16 bits)

- Maskable real-time interrupt, 20 milliseconds

- Input/output signals were mostly either digital differential or high level for high noise

immunity

- Dedicated registers: command; telemetry; ADA; output discretes

- Eleven output discretes (expandable to 16)

- Four input discretes (expandable to 14)

- Four serial inputs (expandable to 8) any word length
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- Fifteen analog inputs; all were differential. Input attenuators and low pass filters or

over-voltage input protection circuits were available. Converted words were 12 bits, 2"s

complement.

- Three analog outputs (expandable to 7); all were single ended. Developed from 12

bit, 2's complement words.

- Telemetry discretes: control mode; write mode; and primary power on

- Command discretes: write enable/disable; control/monitor; on/off

• Input Data Blocks-The DOC would accept the following operational input data:

Data Block

1

2

3

4

5

6

7

8

9

10

11

12

ATS ephemeris

Tracked satellite or Sun ephemeris

Ground and interferometer station coordinates

Angle commands/slew maneuver data

Open

Interferometer null data

Rate gyro assembly bias rates

Sensor misalignment data

ATS time dependent angles

Track satellite or Sun time dependent angles

Sun and Polaris bias angles

Memory rewrite data.

Output Data Blocks-The DOC provided 1 of 5 output data blocks on command. The data

blocks were structured to provide:

Command verification

Operational parameters - most significant bits

Operational parameters - least significant bits

Variable memory

Memory dump.

Mode Commands--The DOC accepted all mode commands from either command/decoder

distributor. Receipt of a new command would automatically cause the DOC to switch to

the new mode of operation.

Back-Up Modes-The DOC accepted inputs from the +X and -X axis digital Sun sensors to

provide yaw-axis backup control for the reference orientation, station point, and offset

point modes.

Sensor Alignment Computation-The DOC provided a capability to compute corrections

to be summed with the sensor outputs for known sensor misalignments. The roll, pitch,

and yaw sensor angular misalignments_ each for al_! three axes, co-ed be transmitted to the
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DOC as part of input data block 8. Only one set of sensor misalignment data could be

stored in the computer at any one time. If the sensors were changed, new alignment data

was sent.

Interferometer Computation-Whenever use of the interferometer was indicated, the DOC

would compute the roll and pitch error signals from interferometer data by nulling them

against bias-counts computed by the DOC.

Attitude Error Filtering-The DOC provided appropriate filtering for all attitude sensors as

a function of individual noise characteristics and specific loop bandwidth requirements.

Rate Derivation-Whenever the inertia wheels had been selected to act as a torquer, the

DOC monitored the attitude sensor outputs and made a computation that provided the

rate stabilization signal. Whenever the reaction jets were selected to act as the torquer, the

DOC provided a pseudo-rate computation for the rate stabilization signal for the control

loop, except during those acquisition modes where the RGA was used for rate stabilization

purposes. During those acquisition modes, the DOC provided a computation based on the

rate gyro assembly outputs for rate stabilization of the control loop.

Roll Angle Step Commands-The DOC monitored the roll angle during all operational

modes (not including acquisition). Depending upon the magnitude and polarity of the roll

angle, the DOC issued separate discrete commands for the Polaris sensor assembly for roll-

angle magnitudes of +2.35 degrees and +7.85 degrees nominally. These discretes were

changed when the roll angle as determined by the DOC was less than the values indicated.

When the Earth sensor was the selected sensor, the roll output of the Earth sensor would

be used by the DOC to determine the step commands. When the Earth sensor was not

selected, the DOC used the interferometer counts or station latitude/longitude as trans-

mitted by the ground.

Yaw Pointing Bias Computation-Using the ATS ephemeris data, the ATS time-dependent

orbital parameters, and either the offset data or the ground-site data, the DOC computed

the yaw pointing command to keep the X-axis of the vehicle in the orbit plane or projec-

tion of the X-axis on the Earth pointed east as required. The yaw pointing command re-

mained at zero following any power-on to the DOC until all required time-dependent

orbital parameters had been transmitted to the DOC. When new orbital parameters were

sent to the DOC via the command/decoder distributor, the DOC used the previously trans-

mitted parameters until all new parameters had been transmitted, verified, and the proper

copy command received.

Roll/Pitch Bias Computation-Using the ATS ephemeris data, the ATS time-dependent

orbital parameters, the offset angle data or the ground site data, and if appropriate, the

ephemeris data for a tracked satellite, the DOC computed the roll/pitch attitude and rate

commands to keep the Z-axis of the vehicle properly pointed.
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Controller Accuracy-The controller error due to the computation of the control law

would not exceed 0.01 degree. The angle command and orbit bias compensation computa-

tions would not cause an error of greater than 0.01 degree for static conditions or of greater

than 0.03 degree for maneuvering modes.

Jet Deadband Control-During all but the acquisition modes of operation, when the select-

jets command was received by the DOC and the coarse-deadband command had not

been received, the DOC would select a deadband equivalent to 0.044 degree (fine dead-

band). If the coarse-deadband command had been received, the DOC selected a deadband

equivalent to 0.44 degree and would return to the free deadband upon receipt of the fine-

deadband command. Acquisition deadbands were as specified for the acquisition modes.

Control-Monitor-The DOC used was selected by external commands. Each DOC was

separately powered from the spacecraft bus. Power could be applied to and removed from

the DOC by a command from either command/decoder distributor. The DOC would be in

monitor status upon the application of power. A discrete was required to command the
DOC into control.

Wheel Commands-The DOC provided an analog output (proportional to the error signal)

to the wheel drive electronics in the actuator control electronics. The maximum output

was capable of driving the pulse modulator in the wheel drive electronics at 100 percent

duty cycle.

Jet Commands-The DOC issued a three level (-1, 0, +1) digital output to the actuator

control electronics for driving jets about each of the three control axes.

In-Line Fault Detection-The Flight Computer Program (FCP) provided detection of

faults in an in-line manner, i.e., while the FCP was performing its normal control computa-

tions, it was also monitoring for various faults and indicating/storing the fact that a fault

had occurred.

The in-line faults were classified as one of the following:

I. Noncritical nonlatchable faults

II. Noncritical latehable faults with no effect on yaw axis control

III. Noncritical latchable faults with potential effect on positive yaw axis control

IV. Critical nonlatchable faults (there were none in this category)
V. Critical latchable faults.

Category I and II faults reported conditions that did not affect the control functions of the

DOC/FCP. Category III faults resulted in an uncontrolled yaw axis (i.e., no torquer com-

mands were issued and the yaw inertia wheel was allowed _o run down) if "fault override"

was disabled. Category IV and V faults indicated presumed DOC hardware failure or lack

of a valid roll/pitch sensor in the loop. DOC response resulted in a pseudo-monitor con-

dition, if "fault override" was disabled, wb.erei.u the DOC appeared as if it was in a monitor
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status(jet-off commands,zero-inertia-wheelcommands,andanactivewheelholddiscrete)."

However, the DOC telemetry would indicate fault 2228 and the DOC/FCP would continue
to compute and issue Polaris sensor assembly (PSA) roll-step commands.

In addition to the critical versus noncritical distinction, faults were also classified as latch-

able or nonlatchable. The latch-unlatch faults secondary mode commands governed whether

or not a latchable fault would be held, both from a telemetry and a response standpoint, if

it occurred and was detected even once. Otherwise, the nonlatchable faults, and the latch-

able faults under the "unlatch faults" condition, were cleared in synchronism with the sen-

sor read rate (0.3 second for the Earth sensor assembly (ESA), 0.16 second average for the

interferometer and 0.1 second for all others) no more often than once every 0.3 second.

Sensor Data-Sensor data available to the DOC was either analog (RGA, wheel tachometer,

CSS/FSS, C-band/S-band/vhf monopulse, PSA, or YIRU) or digital (DSS with 18-bit Gray

code word of combined pitch/yaw data, ESA with 13-bit pitch and 13-bit roll, and inter-

ferometer with 24 bits of combined roll/pitch data). All analog data and DSS Gray inputs

were converted to binary every 0.1 second, whereas the ESA and interferometer inputs

were strobed in every 0.3 second and 0.160 second (on average), respectively.

2. DOC Modes-When the DOC was commanded into a primary mode, it used a preselected con-

figuration of sensors and actuators for operation with the appropriate control law. The actual online

configurations might be changed from the initial configuration by ground selection of alternatives.

The DOC, in addition to commanding the vehicle to the specific mode attitude/rate requirement,

also sequenced those requirements as required by the specific goal of the individual attitude control

mode. Elaborations are given below for each DOC mode.

Rate Damping-Upon receipt of a rate-damp command from either command/decoder dis-

tributor, the DOC selected the attitude control jets for the torquers and the outputs of the

three axis rate gyro assembly (RGA).

The DOC compared the three-axis angular rates from the RGA with a set value of 0.05

degree per second. If the computed value was positive and was greater than 0.05 degree per

second, the DOC would provide a negative jet command, or on a similar basis, a positive jet

command. When all three axes indicated that the rates were less than 0.065 degree per

second, this was indicated in the status word.

Upon receipt of the rate-damp-yaw-inhibit command, the DOC provided rate damping con-

trol for only roll and pitch.

Automatic Acquisition-An automatic sequence for the acquisition of Sun, Earth, and

Polaris was provided upon receipt of the automatic-acquisition command after receipt of

either Sun-acquire (+X or -X) command. Transition to the next phase of the acquisition

was accomplished when the attitude errors were less than 3.5 degrees and the rates were less

than 0.065 degree per second for 5 minutes. In the event attitude and rates were not less

than the indicated values, transition to the next phase was possible upon receipt of an

Earth-acquire or Polaris-acquire command.
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• Sun Acquisition-Upon receipt of either a Sun-acquire (+X) command or a Sun-acquire

(-X) command, the DOC would select:

- The attitude control jets as the torquers

- The outputs of the three-axis RGA for angular rate information

- The outputs of the Sun sensor electronics.

When the pitch and yaw angle errors were less than -+3.5 degrees and the roll, pitch, and

yaw body rates were less than 0.065 degree per second for 5 minutes, the DOC would pro-

vide an indication in the status word.

Earth Acquisition-Upon receipt of Earth-acquire command from the command/decoder

distributor (CDD) or from an internally generated source indicating that Sun acquisition

was complete, the DOC selected:

- The attitude

- The outputs

- The outputs

control jets as torquers
of the three-axis RGA for rate data

of the Sun sensor electronics for attitude information in pitch and yaw.

If acquisition of the Earth was not indicated, the DOC issued a negative roll-rate command

of 0.250 degree per second. The rate was maintained within -+0.075 degree per second of

the commanded value.

The DOC monitored for a discrete signal indicating acquisition of the Earth from the Earth

sensor. If Earth acquisition was indicated, the DOC selected the roll and pitch outputs of

the Earth sensor for attitude information and the roll-rate command was removed.

The DOC continued to use the RGA for rate data and the analog output of the fine Sun

sensor (FSS) electronics for the yaw axis. When roll, pitch, and yaw attitudes and rates

were less than -+3.5 degrees and 0.065 degree per second for 5 minutes, the DOC issued a

discrete. If the Earth acquisition signal was interrupted, the DOC provided a positive roll-

rate command of 0.1 -+0.05 degree per second exclusive of gyro null error and reverted to

pitch control based on the coarse Sun sensor (CSS)/FSS output.

• Polaris Acquisition-Upon receipt of a Polaris-acquire command from the CDD or from an

internally generated source indicating that Earth acquisition was complete, the DOC selected:

- The attitude control jets as torquers

- The outputs of the three-axis RGA for rate data

- The Earth sensor outputs for roll and pitch attitude with the control law as used for

completion of Earth acquisition, and

- The +X or -X axis digital Sun sensors (DSS) for yaw attitude computation.

The yaw angle bias to acquire Polaris was transmitted as part of input data block ! !.
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The DOC monitored the yaw attitude error from the Polaris sensor. If a Polaris acquisi-

tion signal was present and the yaw attitude error, as determined from the DSS attitude

computation, was less than 3.0 degrees, the DOC used the yaw attitude error signal from

the Polaris sensor for the control law computations. Both the yaw angle bias command

and the DSS attitude computation was removed.

When the roll and pitch attitude error from the Earth sensor and the yaw attitude error

from the Polaris sensor were less than +3.5 degrees and the body rates were less than 0.065

degree per second, the DOC provided an indication in the status word.

Reference Orientation-Upon receipt of a reference-orientation command from either CDD,

the DOC selected:

- The inertia wheels as the torquers unless the select-jets command had been received.

If the select-jets command had been received, the fine deadband and the pseudo-rate

computation were selected.

- Polaris sensor for yaw attitude unless a select-DSS or select-YIRU command had been
received.

- The yaw pointing bias computation unless select-DSS/YIRU command had been
received.

- The Earth sensor for the roll and pitch attitude unless the select-interferometer com-

mand had been received.

Offset Point-Upon receipt of an offset-point-angle command or an offset-point-ground-

coordinates command, the DOC selected:

- The inertia wheels as torquers unless the select-jets command had been received. If the

select-jets command had been received, the fine deadband and pseudo-rate computa-
tion were selected. •

- Polaris sensor for yaw attitude unless a select-DSS or select-YIRU command had been

received.

- The normal Polaris yaw point bias computation unless a select-DSS/YIRU command

had been received and the roll and pitch bias computation unless the select-inter-
ferometer command had been received.

- The Earth sensor for roll and pitch attitude unless the select-interferometer command

had been received. If offset-point angle command was received, the computation for

the angle command was used. If offset-point-ground-coordinates command was

received, the computation for latitude-longitude data was used to maintain a fixed

ground aim point for the Z-axis.

Antenna Pattern Maneuvers-The DOC generated the commands to perform slew maneuvers

(cloverleaf) for antenna pattern measurements. Upon receipt of an antenna-pattern com-

mand, the DOC selected the following:

-. The wheels as the torquers unless the select-jets command had been received. If the

select-jets command had been received, the DOC selected the fine deadband unless
the coarse deadband had been selected.
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- The Earth sensor for the roll and pitch attitude.

- The Polaris sensor for yaw attitude.

- The roll, pitch, and yaw pointing bias commands applied to the central offset point

(boresight angle relative to reference orientation).

Also upon receipt of the command, the DOC stored the roll and pitch angle as measured

by the sensor in use for the boresight reference. The DOC selected the proper sequence

of commands depending upon the sign of the boresight angle. Eight sequential com-

mands were required to complete each pattern.

• Station Point Nulling-Upon receipt of a station-point command the DOC selected:

- The inertia wheels as torquers unless the select-jets command had been received. If the

select-jets command had been received, the fine deadband and the pseudo-rate com-

putation were selected.

- Polaris sensor for yaw attitude unless a select-DSS or select-YIRU command had been

received.

- The normal Polaris yaw pointing bias computation unless the select-DSS/YIRU com-

mand had been received.

- The computation for the vhf monopulse signals unless any of the following commands

had been received by the DOC:

Select S-band monopulse

Select C-band monopulse

Select interferometer.

Upon receipt of any of the select commands, the DOC replaced the previous attitude

error source with that commanded.

• Satellite Tracking-Upon the receipt of a sateUite-track command from either CDD, the

DOC selected:

- The inertia wheels as the torquers with tachometer rate computation unless the select-

jets command had been received. If the select-jets command had been received, the

fine deadband and pseudo-rate computation were selected.

- The Polaris sensor for yaw attitude unless a select-YIRU command had been received.

- The Earth sensor for roll and pitch attitude with associated computation of the track-

ing commands by the DOC, unless the select S-band monopulse command had been

received. The Earth sensor remained in an operational status to supply roll information

for determining roll offset commands to the Polaris sensor.

- The computation of the tracking commands unless the select S-band monopulse com-
mand had been received.

• Low Jitter-Upon receipt of a low-jitter command, the DOC selected:

The inertia wheel n_ th_ t,rq,,,_ ,,,;*u +--_._---+-- rate computation-- , ............ *vA _A iv AI, IA I,¢_t_ltwJI ll_,_ I._l
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- Polaris sensor for yaw attitude

- The Earth sensor for roll and pitch attitude unless the interferometer had been selected

- The normal Polaris yaw point bias computation.

Analog Backup Controller-The low-power analog backup controller (ABC), which used only analog

inputs from the sensors, was used as a backup to the DOC's (with reduced operational and perform-

ance capabilities) or for a low-power mode of operation.

Upon receipt of power, the ABC was in a monitor status and the Sun acquisition mode. The monitor

status was defined as the condition in which the ABC would accept sensor and command inputs,

would not issue jet/wheel commands, and would provide error signals to the DACU's. Upon receipt

of an ABC-control command, the ABC issued to the actuator control electronics (ACE) either an

error signal to the wheel modulator or jet firing commands according to the specified mode. The

ABC would return to a monitor status upon receipt of an ABC-monitor command. The ABC would

output a discrete signal to the ACE whenever it was in the control status. As with the DOC, upon

entrance into a mode, the ABC used a preset set of sensors and actuators and sequenced these sets

as appropriate for the specific mode's goal.

The operational and performance capabilities of the ABC for the indicated modes were:

Q Rate Damping-Upon receipt of the rate-damp command, the ABC would null the analog

outputs of the rate gyro assembly (RGA) using commands via the ACE to the appropriate

jets.

Q Sun Acquisition and Hold-Upon receipt of the Sun-acquisition command, the ABC used

the outputs of the Sun sensor electronics for pitch and yaw. The maximum value of the

Sun sensor electronics output resulted in a nominal slew rate of 0.25 degree per second

in pitch and yaw toward the Sun.

Q Earth Acquisition and Hold-When the spacecraft was in the correct orbital position

(orthogonal orientation of Earth and Sun sight vectors) and Earth acquisition was com-

manded by ground personnel, a negative roll rate of 0.25 degree per second was initiated

by the ABC. When the Earth sensor indicated that acquisition of the Earth had taken

place, the ABC removed the roll-rate command and the roll and pitch axes were con-

trolled for Earth pointing by analog error signals from the Earth sensor.

Pseudo-rate-Pseudo-rate was commanded only after the Sun or Earth was acquired. Upon

receipt of the select-pseudo-rate command by the ABC, the RGA signal was inhibited and

the pseudo-rate enabled in each axis. It was then possible to use either wheels or jets as

actuators. However, pseudo-rate should have been selected by ground command prior to

the selection of wheels to avoid the high duty cycle of a wheel/rate-gyro combination or

to avoid the high fuel expenditure of the RGA[jet combination.

• Polaris Acquisition-The acquisition of Polaris with the ABC as the controller was aided by

the ground. Upon receipt of a Polaris-acquire-winter command, the ABC commanded a
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negative yaw rate of 0.10 degree per second, -+5 percent. Upon receipt of a Polaris-acquire-

summer command, the ABC commanded a positive yaw rate of 0.10 degree per second,

+5 percent. The ABC removed the Sun sensor from the yaw control loop upon receipt of

either command. When the Polaris sensor indicated that it had acquired a star by the pres-

ence of the acquisition signal, the ABC removed the yaw rate command and the Polaris

sensor output was summed with the analog rate output of the RGA.

Local Vertical-Upon receipt of a local-vertical command, the ABC used the analog out-

puts of the Earth sensor for roll and pitch attitude inputs and the analog output of either

the Polaris sensor or YIRU for yaw attitude inputs. The roll, pitch, and yaw control acted

to null the Earth sensor outputs and the Polaris sensor outputs to align the +Z spacecraft

axis to local vertical and cause the YZ plane of the sensor to contain the line-of-sight to

Polaris to within 0.5 degree.

The normal mode of control was considered as using the wheels for torquers. Upon receipt

of the wheel-control command, the ABC would output the wheel drive signals and inhibit

the jet drive signals. Upon receipt of the jet-control command, the wheel drive signals were

inhibited and the jet drive signals would be output to the ACE.

Monopulse-Upon receipt of vhf-mono, S-mono, or C-mono commands, the ABC used the

roll output and the pitch output of the monopulse, and the yaw output of the yaw inertial

reference unit or Polaris sensor and acted to null these signals. Commands to select the

inertia wheels or jets were the same'as specified in the above paragraph.

Actuators/Control Electronics

A set of three reaction wheels and two sets of reaction jets were available for applying torques and

forces on the spacecraft. The electronics to control and activate these elements were included in the

actuator control electronics (ACE) box.

The pdrnary functions of the actuator control electronics were as follows:

• Provided power interface control for the inertia wheels

• Controlled valve and catalyst bed primary and backup heaters (ground command)

• Provided latch valve control for thruster and tank selection (ground command)

• Activated orbital and attitude control jets

• Controlled pitch, roll, and yaw momentum (inertia) wheels

• Provided wheel unloading by firing attitude control jets.
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Figure 1-13 is a functional block diagram of the ACE. Under normal operations, the ACE accepted

actuator commands from either the digital operational controller (DOC) or analog backup controller

(ABC) and provided the three inertia wheel drives, latch valve actuations, thruster valve actuations,

heater power, transducer power, and signal conditioning required by the control actuators.

Upon receipt of an enable-ground-control-wheels command, the DOC/ABC control signals to the

wheel drive electronics, to the spacecraft propulsion subsystem (SPS) 1 electronics, and to the

SPS 2 electronics, were disabled. The wheel drive electronics then accepted wheel commands in all

three axes from either the normal command encoder (NCE) and/or the ground attitude control

(GAC) encoder via the command/decoder distributor (CDD).

Upon receipt of a wheel/jet-ground-control-disable command, the ground command capability for

the wheel drive electronics and both the SPS 1 and SPS 2 electronics were disabled, and the DOC/

ABC control signals were enabled.

Upon receipt of an enable-ground-control-jet command, the DOC/ABC control signals to the wheel-

drive electronics, SPS 1 electronics, and SPS 2 electronics were disabled, except that the wheel-drive

electronics inputs would not be disabled if either the DOC or the ABC were actively controlling

with the wheels. Both the SPS 1 electronics and the SPS 2 electronics were enabled to accept jet

commands in all three axes from either the NCE or GAC encoder via the CDD.

The NCE commands to the ACE were single-axis commands of 250 milliseconds duration. The GAC

commands controlled one or more spacecraft axes through six dedicated lines corresponding to

+roll, +pitch, and +yaw; the minimum command duration was 11 milliseconds.

Inertia Wheels and Eloctronics-The inertia wheels and the inertia wheel electronics provided: (1)

small torques to counteract the disturbance torques during all modes except acquisition, orbit con-

trol, and jet-only control; (2) large reaction torques (up to 6.0 in.-oz) during controlled spacecraft

maneuvers; and (3) a wheel-hold mode and logic for unloading the stored momentum in each wheel.

Inertia Wheels-Three inertia wheels were used by the attitude control subsystem (ACS)

to provide the primary means for torquing the spacecraft during all ACS modes of opera-

tion, except acquisition, orbit control, and jet-only control.

Each inertia wheel consisted of a 13-inch diameter flywheel with a moment of inertia of 0.0637

slug-ft 2 that could be driven from zero to approximately 1800 revolutions per minute (rpm) by

a two-phase squirrel cage induction motor. A two-phase 20.0 (-+4.0) volt-400 (-+4.0) Hz excitation

signal was applied to each motor that would develop an angular momentum of approximately 8.2

ft-lb-sec at 1200 rpm. Each inertia wheel developed at least 6.0 in.-oz over the speed range of-1200

to +1200 rpm (Figure 1-14).

A pulse type tachometer, mounted on each inertia wheel, was used to accurately measure the fly-

wheel speed. The tachometer provided a 32-pulse-per-revolution output pulse train to the actuator

control electronics. The output voltage amplitude and pulse repetition rate was proportional to the
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flywheel speed, and the polarity of the pulses indicated the direction of rotation (positive-clock-

wise, negative-counterclockwise).

ACE Inertia Wheel Electronics-The inertia wheel electronics consisted of three identical

channels, one for each inertia wheel. Each channel contained wheel drive electronics, tach-

ometer electronics, and inertia wheel unload electronics.

Each inertia wheel channel accepted inertia wheel drive input signals from either DOC, NCE or

GAC command (via the CDD), or the ABC. In response to the input supplied, each channel provided

the 2-phase, 20 (-+4) volt-400 (-+4) Hz square wave excitation signal to the inertia wheel. The inertia

wheel excitation signals were gated to each inertia wheel by a pulse train that had a duty cycle that

was a function of the pitch, roll, and yaw attitude error signal from the DOC or ABC. No inertia

wheel excitation pulses were generated for attitude error signals less than 0.667 volt (V), +0.014 V

inputs from the ABC or 1.345 V, -+0.027 V inputs from the DOC. Continuous gating of the excita-

tion signals occurred for pitch, roll, and yaw attitude error signals that exceeded 2.00 V, -+0.10 V

inputs from the ABC and 4.02 V, -+0.2 V inputs from the DOC. The minimum time during which

the excitation signal was gated to the inertia wheels was 0.11 second, -+0.02 second.

Each inertia wheel channel also provided the capability of controlling the inertia wheel speed with

commands from the NCE and GAC encoders via the CDD (Figure 1-15). The amount of change

in the speed of the inertia wheel was determined by the duration of the command. An 11-milli-

second (ms) GAC command produced a change of 0.5 rpm, -+0.05 rpm in the inertia wheel speed.

A 250-ms normal NCE command produced a change of 11 rpm, -+1.1 rpm in the speed of the inertia

wheel. In the hold speed mode, the drift rate of the inertia wheel should not have exceeded 4 rpm.

A plus or minus 4.5-Vdc (-+0.5 Vdc) drive direction signal was provided as an indication of the pulse

ratio modulator output from each channel during periods that the inertia wheel was excited.

Each inertia wheel electronic chaa'anel cont "ained a tachometer circuit, the function of which was to

produce an analog output signal that was proportional to the speed of the flywheel and to produce

a direction signal that indicated the direction of rotation of the flywheel. The output speed and

direction data were fed to the data acquisition and control unit in the telemetry and command sub-

system, inertia wheel unload circuits, and the DOC's.

Each inertia wheel electronic channel also contained an unload logic circuit. This circuit monitored

the inertia wheel velocity and direction data supplied by the tachometer electronics and supplied a

discrete pulse train to the appropriate attitude control jet electronics when a predetermined wheel

velocity was exceeded. This pulse train generated a 200 millisecond (ms), -+40 ms command every

10 seconds (s), -+2 s, to turn jets on until the flywheel velocity, as measured by a tachometer cir-

cuit, had been reduced to a predetermined level. The flywheel velocities and tachometer frequencies

at which the unload signals started and stopped are provided in Table 1-2.

The wheel drive electronics also provided signal conditioning of the wheel temperature for telem-

etry. The temperature transducer was of the thermistor type and operated over a temperature range

of 0°F (-18°C) to 180°F (82.3°C). The signal conditioning circuitry provided this temperature indi-

cation to within -+20°F (-+11.5°C) over the temperature range.



42 ATS-6 FINAL ENGINEERING PERFORMANCE REPORT

GAC, NCE ABC, DOC
CMDS CMDS

SPEED I

HOLD
ENABLE

SPEED
HOLD

WHEEL SPEED HOLD WHEN:

1. DOC & ABC IN MONITOR
2. DOC IN CONTROL & HAS FAULT
3. GROUND CONTROL WHEELS ENABLED

Figure 1-15. WheelSpeedHold Loop

Table 1-2

Inertia Wheel Velocity and Tachometer Frequency

Signal Pitch Axis Roll Axis Yaw Axis

Start unload

wheel velocity

Tachometer input

frequency

Stop unload

wheel velocity

Tachometer input

frequency

865 to 995 rpm

461 to 530Hz

690 to 755 rpm

368 to 402 Hz

445 to 515 rpm

236 to 274 Hz

352 to 410 rpm

188 to 218 Hz

605 to 705 rpm

322 to 375 Hz

490 to 565 rpm

261 to 301 Hz
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Spacecraft Propulsion Subsystem-The spacecraft propulsion subsystem (SPS) controlled the thrust

required for attitude control, inertia wheel unloading, orbit control, and stationkeeping. It provided

the primary means of torquing the spacecraft during rate damping, acquisition, and jet-only modes.

The major components of the subsystem were the propellant tanks, latching valves, attitude and

orbit control thruster assemblies, f'flters, fill/drain valves, various heaters, and SPS electronics.

The SPS consisted of two functionally redundant (SPS 1 and SPS 2) subsystems mounted primarily

at the bottom of the Earth-viewing module. Eight attitude control thrusters for roll and pitch con-

trol were mounted on the EVM assembly. In addition, the four attitude control thrusters for yaw

control and the four orbit control thrusters were mounted on truss bars on the east and west tides

of the spacecraft. The moment arm of each EVM thruster was approximately 6.5 feet. The moment

arm of the yaw thrusters was approximately 2.5 feet (Figure 1-16). The average thrust from each jet

was approximately 0.36 Newton (N) over the system pressure blowdown range.

Control Loops

The ACS control loop function and performance depended upon the specific implementations.

All loops were basically standard design using fdtered sensor inputs; fixed (ABC) or calculated

(DOC) commands; compensation with measured, calculated, or pseudo-rate; pulse-ratio modulated

torquing of the wheels, and pulsed actuation of the jets.

Analog Backup Controller Laws

The modes of the analog backup controller were restricted to rate damping, Sun acquisition, Earth

acquisition, Polaris acquisition, local vertical and monopulse modes. In these modes, selected sensor

outputs were used together with spacecraft rate (measured by the rate gyros) or pseudo-rate to drive
the actuators.

Digital Operational Controller Laws

Five laws for the digital operational controller were developed to support spacecraft operations.

These control laws and their relation to the spacecraft operational modes were: (1) Standard wheel

control law related to reference orientation, offset pointing (either in angle or ground coordinates),

slew maneuvers, antenna pattern maneuvers, station point nulling, and satellite track; (2) low jitter

control law related to low jitter and offset pointing to ground coordinates; (3) jet hold control law

related to reference orientation, offset pointing (both angle and to ground), and station point

nuUing; (4) jet maneuvering control law related to slew maneuvers, antenna pattern maneuvers, and

satellite track; and (5) yaw backup control law (wheels and jets) related to reference orientation,

offset pointing (both angle and to ground), and station point nulling.

The standard wheel loops used smoothed input attitude error signals and computed attitude (or

error) rate to pulse-torque the wheels. The jet maneuvering mode was similar but pulse-actuated the

jets, whereas the jet hold mode used pseudo-rate for loop stabilization. The low-jitter control law

used attitude error and its integral as input to a wheel-speed hold loop.
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Figure 1-16. Spacecraft Propulsion Subsystem Geometry

Yaw backup modes, using pseudo-rate for stabilization, provided yaw axis control capability through

the limited range of attitudes in which either of the two DSS's saw the Sun.

Control By Ground Operations Personnel

By command from the ground, either reaction jets or wheels could be actuated. The normal com-

mand encoder or the ground attitude control encoder could be used to activate the spacecraft

torquers. Each wheel, when commanded, was in a wheel-speed hold loop that had as its command

input an integrator whose level was incremented with each command from the ground. Each jet,

when commanded, responded by opening for a fixed time.

Normal Ground Commanding-

• Addressed one axis at a time

• Commanded wheels or jets

• Commanded length multiples of 0.25 second (+11 rpm per 0.25-second wheel command)
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Ground A ttitude Control-

Addressed one, two, or three axes at a time

• Had instantaneous response to transmission

• Commanded wheels or jets

• Commanded length multiples of 11 milliseconds (jets 100 milliseconds minimum)

Group Attitude Control commanding was done by the spacecraft attitude precision pointing and

slewing adaptive control (SAPPSAC) experiment that used a computer on the ground for real-time,

on-line spacecraft attitude determination and control. See Chapter 2 for a description of this experi-

ment.

DESIGN VERIFICATION

In readying for launch, the adequacy of the attitude control subsystem was verified by a sequence

of procedures including:

• Computer simulation testing of an ACS model

• Single axes testing with computer support

• Subsystem testing before, during, and after spacecraft integration

• Testing on the launch pad.

Simulation Testing

During the course of the ATS design, a computer simulation program, called 3XATS, was developed

to permit the rapid synthesis and verification of the control system elements required to stabilize

and control the spacecraft in its various operating modes. Through a continuous iterative refining of

this software package, a highly representative model of ATS was developed.

The 3XATS program was a three degree-of-freedom simulation of ATS in rigid or flexible body

form. The program simulated the dynamic operation of a digital operational controller, analog back-

up controller, six attitude control jets, three inertia wheels, a dozen sensors, and the vehicle dy-

namics of the spacecraft. The Sun, Earth, and the Polaris star, represented in inertial space, served

as reference targets for the ATS attitude sensors, with optional selection of local vertical, ground

coordinates, angle offsets, or a low-altitude satellite as the operational targets of the ATS +Z axis.
Gravity gradient and solar torques were modeled in 3XATS to produce a representative environ-

mental model of ATS during actual operation.

T.t.l.,,,o,_I-3 _v,,pares--_¢ ...... a.,. ,-.1_+.,;._=,-1k.... ¢;n. aXAT S _rtcl th- A('_ performance r_q,]ire.-

ments.
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Table1-3
KeyRequirementsVerificationSummary

Requirement Method Results

RateDamp-DOC

From 0.5°/s to 0.1°/s in 10 min.

Sun Acquisition-DOC

+X from 30 ° to 4.5 ° and

0.1°/s within 10 min.

Sun Acquisition to 30 °

within 20 min.

Earth Acquisition-DOC

Acquisition from + 15° to

<4 ° in <80 min.

Polaris Acquisition-DOC

Point to within 3° using DSS

and prestored data

Complete acquisition in 10

min. after transfer from DSS

to PSA

Reference Orientation

+0.1 ° static accuracy using

ESA or interferometer, either

PSA, wheels or jets

Antenna Pattern

Initiate from 6 ° roU and

pitch from station point using

monopulse. +3 ° pattern

complete in <90 min, with

0.2 ° accuracy

+5 ° pattern in <3 hr. with

0.2 ° accuracy

Orbit Control

Peak error +0.5 ° (thrusting)

Static error <+0.1 ° with

10 minute settling time

Simulate

and Test

Simulate

and Test

Simulate

Simulate

and Test

Simulate

and Test

Simulate

Simulate

and Test

Test

Simulate

Simulate

and Test

to <0.1°/s in 3 min.

to <0.1°/s in 5 min.

to <0.1 °/s in 6 min.

+29 ° to 4 ° and <0.1°/s
in 6 min.

-29 ° to 4 ° and <0.1°/s

in 4 min.

180 ° to 30 ° in 6 min.

with normal thrust

from 45 ° in 5 min.

from 20 ° in 2 min.

0 from 11 ° in 1.5 rain.

from -23 ° to <3 ° in 11 min.

Acquisition in 7 min.

Control to deadband 0.044 ° (J)

and 0.040 (W) supported system

error analysis. R&P = 0.1, Y >0.1

3 ° pattern completed in 80 min.

and max. error 0.035 °

Error <0.1 °

Pitch <0.4 ° , roll <0.32 ° , yaw

<0.32 ° during disturbance
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Table 1-3

Key Requirements Verification Summary (continued)

Requirement Method Results

Low Jitter

Jitter amplitude <+0.01 °

Rate <+-0.001°/s

Error <+0.5 °

Rate Damp-ABC

From 0.5°/s to <+0.15°/s
in 10 minutes

Sun Acquisition-ABC +X Axis

Acquisition to <30 ° in <20

minutes. 30 ° to 4.5 ° in

<10 minutes

Earth Acquisition-ABC

-0.25°/s search rate until

Earth acquisition

Polaris Acquisition-ABC

-0.1 °/s for winter acquisition

+0. l°/s for summer acquisition

Local Vertical

<0.5 ° error using ESA and

PSA, pseudo-rate, wheels

and/or tests

Coarse Sun Sensor

4rr Steradian FOV (Inferred

from acquisition requirements)

Fine Sun Sensor

Discrete >+9 ° target eye

Sun Sensor Electronics

Assembly
CSS to FSS switchover ±9 °

Digital Sun Sensor
Yaw FOV >+60 °

Pitch FOV >+39 °, -60 °

Simulate

Test

Simulate

and Test

Simulate

Test

Simulate

and Test

Simulate

and Test

Simulate

and Test

Test and

Analysis

Test

Test

and 0 <0.005 °

._ <0.009 °

¢:.andb <0.0005°/s
_o<0.o008°/s

0, _ = ±0.009 °

O, _ +-0.0001°/s

Roll not tested

C to in 5 minutes<0.1 5°/s

0 to <0.15°/s in 3 minutes

to <0.15 °/s in 6 minutes

180 ° to 30 ° in 6 minutes

20 ° to <4 ° in 2 minutes in

pitch and yaw

-0.23°/s search rate

20 ° to <4 ° in 3 minutes in

roll axis

+-23° to <2 ° in 7 minutes

Polaris acquired in 4
minutes

<0.5 ° requirement met with

normal disturbance torques
included

Verified

_12 °

Verified

+-64°

+40 ° , -64 °
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Table 1-3

Key Requirements Verification Summary (continued)

Requirement Method Results

Polaris Sensor Assembly Test Yaw >10.6 °

Yaw FOV >9 ° Roll >32.69 °

Roll FOV >28 °

Max. null error +0.05 ° Test

Earth Sensor Assembly Test

Roll, pitch FOV >23.25 °

Digital static error <+0.05 °

Analog null accuracy +0.1 o

Three Axis Rate Gyro Test

Assembly

Gyro zero uncertainty

0.05°/s

Digital Operational Test

Controller

Implement all control laws

Analog Backup Controller Test

Implement backup control

laws

Inertia Wheels Test

>6 oz-in, over -+1200 rpm

Actuator Control Electronics

Wheel Drive Electronics Test

Provide PRM to wheels for

DOC, ABC, NCE, GAC,

NCE and GAC scale factor Test

SPS Control Electronics Test

Drive all thruster and latch

valves

Power Control

Overvoltage 38 V 100 msec Test

Undervoltage 1 msec Test

Supply voltage range 28 to 33 V Test

+0.0489 ° (Acceptance Test)

+0.0588 ° (Qual) (S/N003)

Roll >24.2 °

Pitch >24.4 °

0.04 ° in roll and pitch

Roll 0.045 °, pitch 0.040 °

0.002°/s (Typical at room

temperature) (0.05 over

temperature range)

Verified

Verified

Verified

Verified

Verified

Control verified

All components met require-

ments

All components met require-

ments

All components met require-
ments
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As componentperformancecharacteristicsbecameavailable,they wereincorporatedin 3XATS.
In particular,EarthsensorandPolarissensornoisewasincorporatedto verify anacceptableeffect
onattitudecontrol performance,fuelconsumption,andwheeldutycycle.

Single-Axis Testing

During the single-axis testing, appropriate combinations of ACS elements were linked by an analog

computer, a servoed single-axis table, appropriate sensor targets, and test input/output devices

(Figure 1-17). The whole was then operated in closed-loop fashion over the full range of primary

ACS modes and components. The goal was to gain confidence that the ACS would perform as pre-

dicted by 3XATS.

Sensors on the servoed table included the rate gyros, coarse and fine Sun sensors, digital Sun sensors,

Earth sensor, and Polaris sensor. When, as appropriate, target acquisition was required by specific

sensors in accordance with logic for operation of specific modes, those sensors were not on the table

but were excited by hoods (Earth sensor and Polaris sensor) or target simulators (Sun sensors).

Inertia wheel response was monitored by an inertia wheel torque measuring fixture and the result

was passed to the analog computer (a PACE machine).

Functions simulated on the PACE included the following:

• Single-axis vehicle dynamics with body bending contributions from the reflector and solar

panel flexures

• Vhf, S-band and C-band monopulse outputs

• Jet operations including the following characteristics:

- "On" delay and "off" delay of a jet pulse.

- The jet warm-up and cool-down effect on the thrust magnitude.

Results of the single-axis tests are included in Table 1-3.

ACS/Spacecraft_Testing

Besides the ACS elements themselves, the attitude control subsystem operation involved the follow-

ing spacecraft elements:

• Power subsystem

• Propulsion subsystem

• Interferometer
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Figure 1-17. Typical Test/Simulation Setup
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• Monopulse portion of the communications subsystem

• Telemetry and command subsystem

• Signal paths, interconnecting the above elements.

Reflecting the system interdependency of attitude control functions, the following objectives were

identified for spacecraft testing of the ACS:

I. Verify that the ACS end-to-end loop performance in the integrated spacecraft corresponded

to the baseline established during ACS acceptance testing as a complete subsystem after

the single axis tests.

2. Verify that the ACS loops and components during mission mode operations did not inter-

act adversely with other ATS elements.

.

.

Verify the correct operation of all possible signal paths within the integrated attitude con-

trol subsystem.

Verify that performance of ACS sensors and actuators corresponded to the baseline estab-

lished during single-axis and complete subsystem acceptance tests.

5. Verify all command and telemetry functions related to the operation of the integrated

attitude control subsystem.

It was evident that the first two objectives, which involved loop operations, dictated that the system

be exercised through the entire sequence of mission modes specified for the ACS. The remaining

three objectives were then fulfilled by a series of tests, conducted concurrently with the mode

sequence that exercised in varying combinations, particular signal paths, components, and com-

mands.

Most ACS tests were run using the same sensor stimulators and/or sensors output stimulators used

during the ACS single-axis and complete subsystem tests. Special nonmagnetic stimulators were,

however, devised for ESA and Polaris sensor excitation during electromagnetic interference testing.

A major portion of the tests verified operation and programming of the digital operational con-

trollers. Items that were checked included:

• Control-loop configuration: (1) selection of proper components; (2) requesting, trans-

mission, and acceptance of proper data; and (3) issuance of commands to proper torquers

• Control-loop calculations: attitude error and rate determination setting of proper gains,

deadbands, filter characteristics, loop phasing
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• Logicaland fault modeswitching:automaticselectionof ACScontrolmodeasafunction
of storedcriteria

• Openqoopcalculations:(1) vehicleephemerisandattitude;(2)attitudeandratecommands;
(3) coordinatetransformation

• Storeddata: (1) ATS, trackedsatellite,and Sunephemerisconstantsandequations;(2)
sensormisalignmentandnull data;(3)groundstationcoordinatedata.

Thegroundsupportsystemfor thesetestsincludedtwo PDP11/20 computers that by a radio fre-

quency link through coax cables, issued commands to and received'telemetry from ATS-6. The soft-

ware data base, later transferred intact to the ATS Operations Control Center (ATSOCC), included

format of the telemetry frame, English language descriptors of the telemetry points and commands,

and calibration information. This information was used to produce displays and hard copy outputs.

The most valuable monitor for real-time test operations (also used at ATSOCC) was the CRT

"page" format of ACS status and commands. Pages contained orderly presentations of individual

telemetry items formatted for clarity and ready correlation. Two typical "half" pages are shown
in Figure 1-18.

IN-ORBIT OPERATIONS/PER FORMANCE

ATS-6 was successfully launched into synchronous orbit at 13:00 GMT on Thursday, May 30, 1974.

Injection occurred at 19:30:49 GMT into a near perfect orbit. The automatic separation and de-

ployment sequence was successfully completed and the spacecraft was commanded through the Sun

and Earth acquisition, and yaw reference sequences, with all operations being completed by 02:19

GMT the day after launch. During the next 2 weeks of flight, the spacecraft was commanded into

its normal in-orbit configuration and all systems were evaluated. Following this spacecraft checkout

phase, a series of tests was conducted to evaluate the performance of the onboard experiment sys-

tems and their respective ground system interfaces. At the end of the first month of flight, all sys-

tems had been successfully evaluated with very few anomalies encountered, and the spacecraft was
declared operational.

The purpose of this section is to describe the major operational performance and characteristics
after separation of the spacecraft from the launch vehicle.

Launch and Acquisition

Table 1-4 summarizes ACS performance during the acquisition modes. With the exception of the

initial Earth acquisition, the nominal values were met. The exception, which was caused by an

anomaly in the rate gyro assembly (RGA), is discussed later in this chapter. The only ACS com-

ponents powered-on during launch were the RGA, digital Sun sensors (DSS), auxiliary digital Sun

sensors (ADSS), coarse Sun sensor/fine Sun sensors (CSS/FSS), and the Polaris sensor assembly

(PSA) Sun shutter. Spacecraft telemetry data indicated that all the sensors were operational during

this period. However, the +X DSS identification bit was not illuminated until after separation

because of optical blockage from an adapter leg. The RGA data was compared with the Titan rate
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data and excellent correlation was observed. At separation, the tip-off rates were -0.22, +0.10 and

-0.06 degree per second in roll, pitch and yaw. These were well within the specified 0.5 degree per

second; therefore, the special-rate-damp mode was not required and the ACS remained inactive

during the deployment phase. The spacecraft rates after deployment were -0.13, +0.06, and 0.08

degree per second in roll, pitch and yaw. Approximately 20 minutes after the deployment sequence

was completed, RGA 2 was turned off. With both RGA's on, the rates were -0.15, +0.03 and +0.04

degree per second in roll, pitch and yaw. After turning RGA 2 off, the corresponding uncorrected

readings were -0.22, +0.07 and +0.06 degree per second. The difference in roll rate (-0.07 degree per

second) indicated a fairly large null shift in one or both of the roll gyros. After completion of de-

ployment and RGA 2 turnoff, evacuation and bleed-in of SPS 1 was performed. Positive roll and

positive pitch thruster valves were opened for approximately 7.9 minutes to evacuate the nitrogen

gas contained in the lines. The west prime thruster was then commanded open for 5 minutes. Bleed-

in was then accomplished, and SPS 1 was ready for operation.

Table 1-5 lists the sequence of events that occurred during the acquisition phases.

Sun Acquisition

After deployment, the spacecraft body rates were low enough to go directly to the Sun-acquisition

mode without having to use rate damp.

Sun acquisition was accomplished using the coarse Sun sensor/f'me Sun sensor (CSS/FSS) for pitch

and yaw attitude control, the RGA for three-axis rate information, the ABC as the controller, and

SPS 1 as the torquer. This was the planned ACS configuration for acquiring the Sun by aligning the

+X axis to the Sun-line. The ADSS's and DSS's were operational and used by ground control

(ATSOCC) to determine the attitude of the spacecraft during the Sun acquisition phase. At

150:21 : 10 (1 hour 37 minutes after separation) ABC Sun acquisition was commanded. At this time,

the +X axis was approximately 122 degrees from the Sun-line.

The FSS outputs were saturated until the null phase was within 4.8 degrees of the Sun-line. When

the CSS/FSS came out of saturation, it and the +X DSS tracked within 0.25 degree. The roll axis

was controlled in rate only. Roll rate settled to an indicated value of +0.04 degree per second. The

time required for the +X axis to settle out to its steady state value of approximately 2.0 degrees

from the Sun-line, was I0 minutes. The time to go to, and remain within, the specification value of

4.5 degrees was 7.5 minutes. The offset from the Sun-line was due to RGA biases and the system

deadband.

The SPS 1 jets were fftred during the acquisition of the Sun, with pulse widths of 3 seconds to 121

seconds. (Telemetry resolution is 3 seconds.) Estimated propellant usage was 0.18 kilogram of

hydrazine.

After steady-state attitude was obtained, the ABC pseudo-rate was commanded. The reaction wheels

were then powered on and torquer control was switched from jets to wheels. Control on the wheels

was maintained for 1.4 hours until acquisition of the Earth was commanded. During this time, wheel

unloading was not required. DOC 1 and the YIRU were powered on and checked oo.t prior to the

acquisition of the Earth. No anomalies were found.
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Table1-5
ACSAcquisitionEvents

Event Time Comment

Liftoff 150:13:00:02

Separation 19:33:21

Boom1stMotion 19:39:23
- Complete 19:40:34

Solar Array Unfold 19:46:34

- S Complete !9:50:03

- N Complete 20: 02:00

Reflector Deploy.

- Complete 20:08:12

Boom Drop

- Enable 20: 14:14

- Complete 20:14:32

Sun Acquisition

- Command 21:10:02

- Complete 21 : 20:18

RGA 2 - Off

Pseudorate

Select Wheels

Cmd. Earth Acq.

Complete Earth Acq.

Yaw Ref. Cmd. (ABC

Polaris Acq.)

Yaw Ref. Complete

YIRU Control

21:23:09

21:35:53

23:10:36

151:00:00:00

151:01:46

151:02:15

Sep. rates R = 43.22, P = 0.10, Y = 43.06

Init. rates R = -0.22, P = 0.06, Y = 43.06

At (+y) = 3 min 29 sec

At (-Y) = 15 min 26 sec

Final rates R = 0.135, P= 0.05, Y= +0.08

ZAZ = -140.5 °, ZCOEL = 52.5 °

ZAZ = -91.27 ° , ZCOEL = 90.25 °,

Total angle = 122 degrees

AR = 43.07, Ap = +0.04, Ay = +0.02°/sec

At = 42 min

At = 29 min

Note: All rates in deg/sec

Earth Acquisition

The Earth was acquired during the first crossing of the terminator plane in the evening of May 30,

1974. The attitude control subsystem (ACS) was in its nominal configuration for Earth acquisition.

The Earth sensor assembly (ESA) and CSS/FSS were used for attitude control, RGA 1 for rate,

analog backup controller (ABC) as the controller, and spacecraft propulsion subsystem 1 (SPS 1)
as the torquer. The ESA was powered on at 151:22:51 GMT so that it could be checked out before

the start of the Earth acquisition window. The 3-minute warm-up transient occurred as expected.

At 22: 59, roll and pitch error signals appeared. Interferometer read-out also confirmed the presence
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of the Earth at this time. At 150:23:10 (approximately 5:54 local satellite time), ABC Earth

acquisition was commanded and at 23:18 the ESA acquired the Earth. At approximately ! 51 : 00:02

the ESA roll and pitch errors had been reduced to steady-state values of -0.04 and -0.05 degree,

respectively. The total time for the ESA roll and pitch errors to reach steady state after ABC

acquisition of the Earth had been commanded was approximately 52 minutes. The time to maneuver

and remain within 4.0 degrees of local vertical was 50 minutes. The specification states that the

time to maneuver the +Z axis to within 4.0 degrees of the local vertical shall not be greater than

80 minutes (30 minutes nominal).

The greater than nominal time required to complete acquisition of the Earth was caused by a large

(-0.19 degree per second) gyro null shift in the RGA 1 roll gyro. The roll axis settled out in a 2-

degree limit cycle with an offset of approximately 7 degrees. Pseudo-rate with wheels was com-

manded at approximately 150:23:42 GMT resulting in a roll overshoot in excess of 15 degrees (test

data showed that acquisition of the Earth is normally lost at a roll angle of approximately 14.6

degrees). ABC acquisition of the Earth was commanded at 23:47 re-enabling jet control. RGA 2 was

turned on and RGA 1 turned off, and the spacecraft settled out from an offset of 8.5 degrees in 6

minutes.

The time to settle in pitch from an initial error of 11.5 degrees was 3 minutes during the Earth

acquisition mode. The yaw axis was controlled by the CSS/FSS, with yaw attitude error varying

between +0.89 degree to -2.67 degrees during this period.

After the roll and pitch errors had reached a steady state, ABC pseudo-rate was commanded taking

the RGA out of the control loops. Reaction wheels were then commanded to be the torquers and

reduced the limit cycle from 0.2 to 0.3 degree to less than 0.1 degree. Estimated use of propellant

while in the Earth acquisition mode was 0.44 kilogram of hydrazine.

Polaris Acquisition

Acquisition of Polaris was accomplished in two parts, the first being performed during the first day

by rotating the spacecraft about its yaw axis to point the -Y axis toward Polaris. The actual acquisi-

tion of Polaris was performed several days later.

The acquisition of Polaris by the ABC (winter) was commanded at 151:01:21 GMT resulting in a

negative rotation about the yaw axis while pitch and roll attitude were controlled by the Earth

sensor assembly (ESA). This was done to avoid slewing the Sun across the north face of the Earth-

viewing module. At a (-X) DSS yaw angle of approximately 19 degrees, the yaw rotation was stop-

ped by ground command. This maneuver took 28.4 minutes for a rotation of 200 degrees, thus the

yaw rate was -0.118 degree per second. Estimated use of propellant was 0.03 kilogram of hydrazine.

After the yaw reference maneuver was completed, the ABC was commanded into local vertical using

the yaw inertial reference unit as the yaw axis attitude sensor.

The Polaris sensor assembly (PSA) was turned on the fourth day and Polaris was acquired. During

the Polaris checkout phase, frequent "glitches" were noticed in which a moving particle would

appear to be tracked. In most cases, the PSA would reacquire Polaris after a small error buildup; in

some cases, star acquisition was lost. The PSA was then turned off for 3 days to allow additional

outgassh_g.
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Initial 30-Day Checkout (Specification�Compliance)

Fairchild ATS-F Specification 862-0001 D established the attitude control subsystem performance

requirements. These, together with actual achieved performance measured during the first 30 days

of operation, are shown in Table 1-6. All performance specifications were met or bettered by a wide

margin.

Comprehensive testing was confined to the first 30 days in orbit to focus subsequent operations on

the support of ATS-6 communication experiments.

Absolute Accuracy Considerations

When considering the performance data of Table 1-6, it is important to note that evaluations of

accuracy were made using the Earth sensor and Polaris sensor, the ACS control sensor themselves,

to verify specification compliance. Changes in calibration of these prime elements are basically un-

detectable and, therefore, lead to uncertainty as to absolute accuracy. Illustrating this fact is Figure

1-19 that compares roll and pitch data available simultaneously from the Earth sensor and inter-

ferometer. A time-varying angular difference of up to 0.05 degree in roll and 0.05 degree in pitch

is observed. Which is the more accurate? Why does the divergence exist? Attempts to answer these

questions have been unsuccessful. Although the differences are not significant for ATS-6, they may

well be in other spacecraft desiring to use these sensors.

Similarly, an uncertainty existed in the determination of the attitude of the spacecraft's -Y axis

that nominally points due North. The PSA's "intensity" signal variation over a 1-week interval,

shown in Figure 1-20, indicates the variation in light energy falling on the sensor's image dissector

tube (IDT) photocathode. Correlations of the intensity variations with the star field near Polaris

indicate the stellar source of the variations. Because the PSA tended to track the centroid of the

light falling on the IDT, the introduction of extraneous stars into the PSA's field of view caused

some errors in locating the prime source, Polaris.

Low Jitter Considerations

No accurate direct measurement of low jitter performance was available. Evaluation of performance

using the onboard sensors (ESA interferometer and PSA 2) was difficult because of the noise inher-

ent in the sensors, their readout rates, and their resolution. Resolutions of ESA, the interferometer,

and PSA 2 are 0.0055 degree/bit, 0.0014 degree/bit, and 0.026 degree/bit. Minimum update inter-

vals were 160 ms and 22.5 ms, respectively. Noisy interferometer and ESA sensors, typified by the

outputs shown in Figure 1-21, indicated vehicle rates improperly. This analysis used the wheel

excitation dwell data (i.e., readout every 22.5 ms) to determine the actual wheel torque-time his-

tory for the sample period. The alternate torquing due to wheel drive (10 in.-oz) and wheel run-

down (0.74 in.-oz) resulted in a change in vehicle rate history. Rates calculated using this alternate

torquing were believed to be representative of actual vehicle rates that would be measured by perfect

sensors with bandwidth sufficient to include the control actions of the low-jitter control loops.
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(JULY 6, 1974)

Figure 1-19. Difference Between ESA and Interferometer

Outputs When Pointing at Rosman
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Figure 1-21. Typical ESA Outputs During Low-Jitter Mode



ATTITUDE CONTROL SUBSYSTEM 63

High-frequency disturbances outside the control-loop bandpass were applied to the system by oscil-

lating components in the very high resolution radiometer and Environmental Measurements Experi-

ments packages. These disturbances were about the pitch and roll axes only. If the satellite was rigid,

the effects of those torques on attitude and rate would be negligible; however, the possibility existed

of amplification due to structural resonance. Figure 1-22 contains the pitch and roll outputs of the

interferometer with the ACS in low-jitter mode using both interferometer and ESA as pitch/roll

sensors. No indication of resonance could be found at any frequency.

Normal Spacecraft Operations

After the initial performance verification period, the attitude control subsystem was used almost

exclusively as a tool rather than as a subject for investigation. Consequently, actual relation of per-

formance to specification was not investigated as long as the requirements of onboard experiments

were satisified. To ensure this performance, continual monitoring of the operation and of the visual

quality of the data transmission was made by the experimenters. At ATSOCC this monitoring was

done by communications and attitude control engineers by using available displays.

Effects of Component Failures

Effects of Roll Wheel Drive Failure-From June 26, 19751 the time of the partial failure of the roll-

wheel drive electronics, the wheel was not consistently capable of being electrically driven in the

plus-wheel-speed direction (-ON times). (Wheel acceleration in this direction produces a negative

torque on the spacecraft.) However, uncontrolled negative roll torquing, through wheel action, was

available through the wheel windage and friction rundown torques when the wheel had negative

speed. Negative roll torquing through jet thrusting was ordinarily used employing the jet-assist

mode (JAM)* when the wheel's rundown torques were too small to maintain control, a situation

that primarily occurred when wheel speed was essentially zero. This use of the minus-roll thruster

via JAM effectively kept the roll wheel from attempting to drive into the plus rpm region.

Rundown torques ranged from about 0.2 to 1 in.-oz, depending upon wheel speed and temperature,

compared with about 8 to 10 in.-oz normally available. Operations using these torques were satis-

factory for attitude-hold modes when wheels torquing requirements were small. Occasionally, for

maneuvering conditions, such as tracking of high inclination satellites (when required minus-roll

torques might have exceeded 0.3 in.-oz), rundown torquing was not adequate so that jet assist was

required. To ease these roll-torque requirements, an additional operational mode-satellite track

electroscan mode-was added to the system. Here, the spacecraft roll-command angle to the control

system was set to one-half the actual line-of-sight, roll-angle requirement. The remaining one-half

nominal roll angle required to communicate with the tracked satellite was obtained by using the

communication subsystem's offset beam capability.

*In JAM the negative-roll jet fired when the spacecraft, under wheel control, had hysteretic roll errors of +OA/O.l degree or +0.I/

+0.04 degree in coarse or f'me deadband, respectively.
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Effect of Polaris Sensor Assembly Failure-On October 21, 1975, the Polaris sensor assembly failed

and was turned off. From the time of that turnoff, there was a distinct change in knowledge of

absolute attitude control performance. Thereafter, the yaw inertial reference unit (YIRU) was used

as the primary yaw control sensor with the digital Sun sensors (DSS) used for periodic re-referencing.

Thus, yaw attitude was determined using a dead-reckoning approach; i.e., based on the initial con-

ditions and subsequent history of angle motions. The DSS contributed measurement inaccuracy (bit

transition accuracy -+0.1 degree) and poor resolution bit size (0.5 degree). The YIRU contributed

errors due to random drifts (0.1 degree per hour), orbital-rate coupling errors when the roll angle

was nonzero, and Euler-rate coupling errors during vehicle motions. Together, these (without Euler-

rate coupling compensation), yielded yaw attitude errors of about -+0.3 degree which was adequate

for practically all ATS operational requirements. (When excessive pointing error occurred due to the

yaw inaccuracy, as occasionally happened during the Satellite Instructional Television Experiment,

attitude-rereference pulses were sent by ground command to achieve satisfactory Z-axis pointing.)

Operationally all control modes were supported by the DSS/YIRU combination with the possible

exception of the low-jitter mode. The potential inability to support low jitter (hence the Very High

Resolution Radiometer experiment) was of no significance due to the earlier failure of the Very
High Resolution Radiometer experiment itself.

Use of Digital Operational Controller Reprogramming Capability"

The versatility of the digital operational controller (DOC), through reprogramming, permitted

simpler, more fuel-efficient, and a more component-failure-tolerant operation. Specific examples
were:

Mixed Mode Added-Immediately after the roll-wheel drive failure occurred, the attitude control

subsystem was used in the jet-control mode. To reduce the use of propellant, a new mode of opera-

tion-mixed mode-was introduced. In this mode, pitch and yaw axes were controlled by wheels

with the roll axis controlled by jets. The projected life of ATS-6, based on fuel expenditure, in-

creased with this mode from about 2 years (with restricted operations) to about 5 years (with
restricted operations).

Jet-Assist Mode Added-Further reduction in fuel consumption from that used in the mixed mode

was obtained in the jet-assist mode (JAM). Here, advantage was taken of the still operative negative-

wheel drive capability of the roll-wheel electronics by using DOC to command negative-wheel accel-

erations (i.e., positive spacecraft torques). Negative spacecraft torques were obtained by the run-

down friction and windage of the roll wheel and intermittently by negative-roll jet thrusting. The

DOC issued no positive drive commands in this mode. The projected life of ATS-6, based on fuel

expenditure, was thus raised from 5 years of restricted operations to nearly 7 years of unrestricted
operations.

Fuel Use Counter Added-When roll-jet operations in the JAM mode became routine, some concern

arose about fuel usage rate and the number of jet firings. To keep track of these data, a counter on

DOC jet commands was added to the flight computer program.
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ACS Parameters Modified-To reduce jet firings, ACS loop deadbands were altered.

Satellite Track Electroscan Mode Added-This mode was devised to reduce spacecraft motions inci-

dent to tracking a satellite target, and thereby reduce jet fLrings. In the electroscan mode, the nom-

inal roll-track angle was halved with the remaining half-roll angle being supplied by the offset beam

capability of the tracking antenna.

Satellite Track with Interferometer Added-To maintain near normal operation despite possible

Earth sensor failure, or error due to the presence of the Moon in the Earth sensor's field of view,

the interferometer was made a valid roll/pitch sensor for the satellite-track mode. To achieve this

and add other DOC programs within the available memory, some DOC programs were deleted.

Among these were the automatic-acquisition mode, which sequenced Sun, Earth, and Polaris

acquisitions, and both antenna-pattern modes. Also deleted was all the DOC code relating to the use

of a laser as a pitch/roll sensor, which had been considered early in the ATS history but never im-

plemented. (To facilitate the code additions in neighboring memory locations, some code, relating

to Polaris acquisition, was moved from its original location.)

Incremental Misalignment Data Blocks Added-The original flight computer program contained a

19-item data block for introduction of sensor misalignments into DOC computations. Incremental

roll and pitch rnisalignment data was added in shorter, hence quicker to transmit, data blocks with

two and four items. These additions facilitated reorientation of the spacecraft to accommodate the

off-axis centerlines of the communication subsystem's antenna beams.

Simultaneous, Continuous Operation of Opposing Yaw Jets Added-After the failure of valve

heaters on the spacecraft propulsion subsystem-1 truss valves, it was necessary to keep those valves

warm to prevent failure. This warming was accomplished through the addition of a program to the

DOC that continually commanded yaw pulsing of both positive and negative yaw jets. This program

was used during occult periods after the truss-jet feed lines were emptied.

Effective Telemetry Reformatting Used-When assessing the low jitter performance of the space-

craft, it was desirable to obtain attitude information as frequently and accurately as possible. But,

ordinarily, the interferometer and Earth sensor outputs were available to the ground, through stan-

dard telemetry, only once each minor frame (3 seconds). This limitation was due to the length of

the sensor outputs (greater than 9 bits) and the ability of the telemetry system to dwell on only one

telemetry channel at a time.

By dwelling on the DOC's telemetry channel and using output data block 4 to transmit the contents

of the DOC's input-attitude sensor storage locations, it was possible to obtain updated pitch and roll

attitude information from the interferometer every 0.4 second. The 0.4-second interval consisted of

four successive 0.1-second intervals for obtaining the roll and pitch most significant and least signif-

icant bit sets.

Yaw 180.Degree Operation Added-After the failure of the Polaris sensor, there was no inherent

advantage to operating the spacecraft with the negative-pitch axis pointing North rather than point-

ing South. Some thermal advantages by the battery with operation in the latter mode were realized.
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To accommodate operation in this "flipped" orientation without changing the data content of the

DOC input data blocks, the "flipped mode" was implemented.

This mode was used intermittently during the life of the spacecraft.

Use of Redundant Sensors

Pitch/Roll-Five pitch/roll signal sources-the Earth sensor assembly (ESA), the interferometer, and

the three monopulse outputs-were available for use. With the exception of occasional use of an

interferometer, the attitude control subsystem used the ESA almost full time.

The wide field of view (at least +35 degrees) of the interferometer made it useful for restoration

of Earth acquisition when the narrower field of view of the ESA was inadequate. This circumstance

occurred several times during the mission when the ESA lost acquisition of the Earth.

Occasionally, on a predictable basis, the Moon passed through an ESA pitch or roll scan. Roll or

pitch error outputs resulted, yielding transient spacecraft motions. By using the interferometer as

sensor, rather than the ESA, these attitude perturbations could have been eliminated. Usually, this

was not done because of the inconvenience associated with activating the ground transmitter re-
quired by the interferometer.

After the Polaris sensor assembly (PSA) failure, contingency plans were made to obtain yaw axis

information from simultaneous outputs of the ESA and the interferometer. The necessary DOC re-

programming was done and the system operated. Noisy yaw information was obtained. Although

never used operationally, this mode was retained as a backup to the yaw inertial reference unit
(YIRU).

So successful was the operation of the attitude control subsystem that the analog backup controller

modes using monopulse inputs were not used until those modes were tested in a set of final engi-

neering tests before the decommissioning of ATS-6. Normal operations were obtained within
specification limits.

Yaw-The PSA and the YIRU were provided for full-time control of the yaw axis. Part-time control

capability existed by use of the digital Sun sensor (DSS). The DSS and auxiliary digital Sun sensors

provided full yaw information albeit with high inaccuracy near orbit noon and midnight.

During the first 4 days in orbit, the YIRU was used as yaw reference. On the fourth day, the PSA

was turned on and the star Polaris was acquired. During the Polaris checkout phase, it appeared that

targets in the PSA's field of view were being tracked. In most instances the PSA would reacquire

Polaris after a small error buildup; occasionally star acquisition was lost. On the assumption that the

targets were particles being emitted by outgassing from the spacecraft, the PSA was turned off for

3 days. After being turned on again, the PSA was operated in the control loop with operation nor-

mal. Although there were periodic losses in Polaris tracking, the DOC operated in a mode that auto-

matically switched the YIRU into the control loop when the PSA lost acquisition. Usually, auto-

matic reacquisition of Polaris occurred resultino in the D(_(" r_¢_l_et{ng _ho P_A ae r*f'..°._,-. SO ÷h.÷
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intervention by ground control was not often required. At times, after a PSA anomaly, the vehicle

had a yaw attitude so large that reacquisition of Polaris could not automatically be accomplished.

At these times yaw backup control using DSS was commanded. In this mode the DSS, with one-half

degree resolution, was used as yaw sensor and the DOC, using stored data, computed the required

DSS output to maintain the same yaw attitude as would be achieved if the PSA was operating.

Polaris acquisition was then obtained by ground commanded flybackand sweep, after stable DSS

operation was achieved.

Use of Redundant Controllers

Two digital operational controllers (DOC) and an analog backup controller (ABC) comprised the

onboard controller set.

With the exception of occasional use of the ABC during reacquisitions or during anomaly testing

or for experiment response, the spacecraft was nearly continually under DOC control.

Before the launch of ATS-6, some uncertainty existed about the capability of the two DOC's to

withstand launch without sustaining memory changes. To overcome this uncertainty, the ABC was

charged with the task of initial acquisition and the task of providing limited operations control

capability, i.e., local vertical and monopulse modes, in the event of failure of both DOC's. Implicit

in this latter task allocation was the reasoning that simple analog systems would be more reliable

than complex digital systems. ATS-6 history does not confirm nor deny this idea, since both the

ABC and the DOC basically performed without flaw in all standard operations. Even the launch

fears relating to DOC were unfounded; analysis of the memory dumps immediately after initial

acquisition showed both onboard digital controller memories unaffected by the launch.

Because it appeared worthwhile to confirm the operability of the ABC after 5 years m orbit, years

in which the ABC had been used only infrequently, some rechecking of ABC local vertical control

was done during the t'mal engineering tests. Control appeared similar to that obtained during the

initial week in orbit.

After May 31, 1974, the second day in orbit, one of the two DOC's was used by the attitude

control subsystem for control of the spacecraft. No functional failures of hardware were observed

although software errors were found. Because, for an extended period of time, DOC 1 was in active

control with DOC 2 in monitor, it appeared worthwhile to verify the control capability of DOC 2

during the final engineering tests. Normal ACS operation was observed.

Ordinarily, when spacecraft electrical power was not a problem, both DOC's were ON, one in con-

trol, the other in monitor. Turn-off of the DOC was only done during power-limited operation.

Though both were on, their flight computer programs often were different to facilitate testing of

new programs under conditions of minimum risk.
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Use of Redundant Actuators

A set of 12 reaction jets, in redundant sets of 6, and a set of 3 reaction wheels comprised the atti-

tude control subsystem actuator set. The function of the jets was to provide three-axis attitude con-

trol torquing and translation thrusting during orbit change or stationkeeping maneuvers, to provide

three-axis control torquing as prime actuator in the event of the unavailability of reaction wheel

control, and to provide reaction wheel momentum unload.

To conserve propellant, the rea,tion wheels were used whenever the torquing requirements per-

mitted their use. The supplementing of wheel torquing by jets, made necessary by the roll wheel

failure, has been described previously.

Selection of the active jets could be made by full sets or by specific choice of jets from each set.

As the spacecraft mission progressed, the failure of various jets caused the use of both of these

capabilities. Jet contingency plans were formulated to maintain control capability despite these pro-

gressive failures and the roll-wheel controllability limitation. Among the operational approaches

devised and tested were to:

Cause the spacecraft to achieve orientations for a short time in which the external torque

effects were specifically desired rather than have the spacecraft merely follow arbitrary

orientations (from the torque point of view).

Cause the spacecraft to achieve orientations in which the total angular momentum stored

in the spacecraft pitch-roll plane always had a component stored as a negative roll-wheel

speed. A technique using repetitive 180-degree yaw turns was an example of this concept.

Replace the capability of an inoperative jet by the capability of a still operating jet that

was, temporarily, reoriented to achieve the desired angular momentum increment. An

example of this was: positive roll jet capability is replaceable by negative pitch jet action at

90 degrees yaw.

• Periodically use the positive yaw jet to "reset" the yaw wheel speed so that the inherent

yaw/roll wheel coupling forced the roll wheel to drive negatively after reset.

Temporarily store the angular momentum in the spacecraft itself, which in a perfectly

operating system would be stored in the roll wheel running with positive speed. This stor-

age was visible as a spacecraft positive-roll rate.

A digital computer program with display was installed at ATSOCC for the purpose of familiarizing

operating personnel with the effects of possible jet/orientation procedures (with prescribed roll/

pitch trajectories) on wheel-speed trajectories. A copy of the display is given in Figure 1-23.

The first technique listed was used for about 6 months to maintain pitch-wheel control capability

and the second technique listed was used for the final 2½ weeks of ATS operational life.



70 ATS-6FINALENGINEERINGPERFORMANCEREPORT

INITIALIZATION

"PROMPTS"

INITIAL CONDITIONS:

S/C W LONG = 140 °
DAY OF YEAR - 175

GMT IN HOURS = 10

ROLL DEG = 0
PITCH DEG = 0

YAW DEG = 0 R

ROLL RPM =--50 , I J :
PITCH = -450 -- 1000

YAW RPM - --175

i! PITCH TRAJECTORY

ATTITUDE I

(DEG) ',

2
PITCH

I

I

I

t

ROLL -0"

RESULT OF - 2
TWO + 90 ° YAW

MANEUVERS

YAW 0

--360
Illl I1' *l ItH

RvsY

WHEELS

1000 RPM - 1000 RPM

Y P

R,.,P _i

WHEELS

R
I I I I : :

--1000 i_ •,, i

I

I ! ,

I I I

........ _ _ _" ...... I ............................ _ .....

I - I ,, ,, : -JET
I I I I

..... ill'_""_- ._ '_L. --_ _.;,.,lll,.... :'1' "--_'_- ROLL JETFIRING'......... _,........ _ - I DENT"I_:I' CATION - -:-+ J"ET: :' _:_ ' - JET
II I I

i 12 I _ , ,
o :,,I,,,,,,,,,,,1°,, ,,,:,,I,,,, ...... IP,...... _,,J...... _,,l ° ...... ,:,,I....... a,,I, ,........ i " ' ; "Io I h2I o , I iol I , Io , EST

I 0 '12 _0 " ' 0 _ ',0
S/C TIME

EXPECTED ATS4S ATTITUDE AND WHEEL SPEED TRAJECTORIES

Figure 1-23. Momentum Management Planning Program Display

Final Engineering Tests

Just before the f'mal ATS-6 orbit altitude reduction, a set of engineering tests were performed to:

• Verify the proper operation of system elements not used for an extended period of time

(DOC 2 and ABC were tested)

• Verify the proper operation of system backup capabilities never used (ABC use of mono-

pulse inputs was tested)

• Gather information, related to ACS components that failed, to determine the failure mech-

ansim (PSA and RGA 1 were tested)

• Gather information related to component performance changes (tested were reaction

wheels, YIRU, and related changes in ESA/interferometer performance)

Results of these tests are given under the heading "Design Verification," and in the following

paragraphs.
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IN-ORBIT ANOMALIES

Two classes of in-orbit anomalies may be considered. They may be denoted as either "true" or

"pseudo" anomalies. The first results from an actual component anomaly, the second from normal

component response to unexpected component stimulation or status. The following sections des-

cribe these anomalies in greater detail.

True Anomalies

Rate Gyro Assembly No. 1 Null Bias

During the initial phase of Earth acquisition, the attitude control subsystem (ACS) failed to drive

the zero-attitude error in roll after the Earth was acquired by the Earth sensor assembly (ESA). The

roll angles were held, with some oscillation, at about 8 to 9 degrees. Normal attitude control to

zero-roU error was achieved when the rate gyro assembly (RGA) 2 was substituted for RGA 1 in the

control loop.

A review and analysis of data led to the following observations:

During and after boom deployment, the RGA I roll output had an offset 43.1 9 degree per

second seen both on its telemetry and its ACS output signals. RGA 2 roll gyro had negli-
gible offsets in both outputs.

Because the RGA telemetry indicated no essential error before launch, it was concluded

that the degradation in RGA 1 output occurred during launch and/or separation. The deg-
radation was probably in the RGA electronics.

It is interesting to note that indications of the RGA 1 output offset were available nearly 3 hours

before that flaw was made visible by the improper control during acquisition of the Earth. The

following illustrates this.

Both RGA's were on before lift-off. Roll RGA telemetry indicated 0.02 degree per second. (A single

signal indicates the combined sum of the RGA outputs.) The low indicated rate was well within

expectation.

The boom drop was normal and took about 2 minutes to complete. RGA telemetry indicated roll

rates of 43.28 degree per second before deployment and 43.19 degree per second after. The short

time period for the total boom motion and the indicated low pitch and yaw rates (0 and 0.4 degree

per second) suggest that the RGA roll readings were about a fixed inertial axis. The expected ratio

of roll inertias from before to after deployment was 1:2.1. Actual vehicle rates can be inferred from

this data by noting that the vehicle rates should vary inversely with the inertia ratio. The inferred

final roll vehicle rate was -0.1 degree per second; i.e., the RGA 1 and 2 gyros indicated 0.1 degree

per second less than the true rate.
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About 50 minutes later, the roll RGA indicated the same rate (-0.19 degree per second) and RGA 2

was turned off. RGA telemetry then jumped to -0.27 degree per second. Assuming no change in

vehicle roll rate, the RGA 1 telemetry bias is given by the difference between true and telemetry

rates. If the inferred rate computed above is used as "true," then the RGA 1 roll telemetry bias was

-0.18 degree per second (-0.27, +0.09). It should be noted that RGA circuitry tended to average

RGA 1 and RGA 2 outputs when both were on. The approximate doubling in estimated telemetry

bias from -0.1 degree per second with both RGA's on to -0.18 degree per second with RGA 1 only

on was consistent with RGA 2 having zero bias and RGA 1 having -0.18 degree per second bias at

that time.

After acquisition of the Sun at 150:21:10 Z, RGA roll telemetry indicated a near-zero rate (0.05

degree per second) and pseudo-rate wheels were commanded. Indicated roll RGA telemetry remained

essentially constant. Two independent means were then available for measuring roll rate:

. The angular momentum stored in the pitch and yaw wheels was interchanged as the vehicle

rolled while holding on the Sun line. Using the characteristic period of the wheel-drive

signals, the roll rate could be estimated at +0.25 degree per second.

. The interferometer was turned on before acquisition of the Earth. Ground transmitters

excited the interferometer at about 150:22:59. Indicated roll rate from interferometer

count changes was +0.24 degree per second and the RGA 1 roll telemetry bias was there-

fore -0.19 degree per second (+0.05, -0.24) at that time.

Better on-line operations and analysis techniques would have revealed this anomaly before it became

a source of difficulty. It should be noted that spacecraft integrity was never threatened; a threat

only existed to the mental tranquillity of those monitoring the spacecraft operation.

Yaw Inertia/Reference Unit Bias Compensation Dropout

During the initial in-orbit checkout of ATS-6, it was observed that the yaw inertial reference unit

(YIRU) rate bias compensation function was not working properly. (The purpose of the compen-

sation was to bias the torque on the gyro's float so that there would be no float motion due to inher-

ent gyro drift torque and/or torques due to sensing components of spacecraft orbital rate.) The bias

compensation, which has a ground-commanded value, was intermittently changing from its com-

manded value to zero, and not responding to subsequent compensation change commands until

the rate-bias-reset/rate-bias-enable command was issued. The time durations for which the bias

remained at the commanded value varied from less than a minute to several hours.

A review of the compensation circuitry resulted in a conclusion that the most probable cause of this

behavior was a failure in a relay's circuitry that caused it to be sensitive to noise on the rate-bias-

disable/YIRU-heater-enable command line. The source of that noise was found when it was noted

that a dropping of the ATS-6 command carrier (at 154 MHz) correlated perfectly with the bias

compensation dropout. Consequently, awareness of the situation eliminated the bias compensation

problems. Usually, the carder was maintained up.
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Later it was found that transmission from the 154-MHz transmitter located at Brevard near Rosman,

North Carolina, was interfering with the Greenville, North Carolina, fire department's mobile units

that communicated at that frequency. ATS-6's alternate command frequency was then used; how-

ever, other spacecraft shared this command frequency, necessitating intermittent dropping of the

ATS-6 command carrier with the concomitant bias compensation dropout.

It is worth noting that the integration testing, described earlier, was designed to uncover intersub-

system effects but did not reveal the bias compensation/telemetry and command system coupling,

if indeed that coupling existed at that time.

The inconvenience and "workarounds" required to bypass the bias compensation anomaly empha-

sized the desirability of having the YIRU commandable by the digital operational controller (DOC).

This linking was not done because the YIRU was installed as a functional backup to the Polaris sen-

sor assembly (PSA) and as a substitute for a redundant PSA at a tune too late for making the neces-

sary input/output changes to the DOC.

Roll Wheel Anomaly

On June 26, 1975, (GMT Day 177), an instability developed in the attitude control subsystem (ACS)

roll axis subsequent to an anticipated attitude perturbation induced by the Moon transiting the

Earth-sensor roll scan. After the Moon exited the scan, the roll axis developed a divergent, double-

sided limit cycle instead of stabilizing. Subsequent action by the ATSOCC personnel isolated the

problem to the roll reaction wheel and/or its associated electronics. The spacecraft propulsion sub-

system (SPS) was then selected for the system torquer and the roll axis stabilized.

ATS-6 engineers were directed to:

• Analyze the ACS telemetry recorded at the time of the instability, and define and conduct

troubleshooting tests to further isolate the cause of the anomaly.

• Determine if the roll wheel could be used, under what operating conditions, and the impact
on the mission.

Generate the required changes to the DOC program to allow a mixture of the roll jets and

pitch/yaw wheels to be used as the attitude torquers, and incorporate the changes into

the DOC's. This mixture of jets and wheels has been designated as the ACS mixed mode.

• Determine the fuel consumption and impact on the mission if the mixed mode would be

required for the remainder of the life of the spacecraft.

After the troubleshooting ACS test results were obtained, it was concluded that the problem was

in the drive electronics, so a failure-mode-effects-criticality-analysis (FMECA) was conducted for

the roll-wheel electronics. That analysis resulted in three candidate components that could malfunc-

tion and cause the type of roll wheel failure that was observed. These were: (1) an amplifier was

_,,,_,,,_-r, xatL,,., a ,urn, xxuquu.t_y ost;xuatlon, I.-_) a _-px ceramic capacitor, used to stabilize that
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amplifier, was leaking excessively or opening, or (3) one of the 1-#f ceramic capacitors around that

amplifier was leaking during periods when it was being charged.

The wheel-drive circuit was breadboarded and tested to verify the FMECA results. An electronics

card containing the circuitry was taken from the actuator control electronics (ACE) qualification

unit and similarly tested. The results ruled out the failure of the 33-pf capacitor as causing the

anomaly. The failure could not be duplicated with the capacitor open or shorted. An excessive

leakage rate of one or more of the 1-#f capacitors could cause the anomaly. Also, if the amplifier

broke into oscillation, the anomaly would result. However, since the amplifier was an integrated

circuit, it could not be modified to cause it to break into oscillation.

Research conducted into histories of the failures of the amplifiers indicated that there had been a

history of bonding-post separation failures on the amplifiers used on Honeywell's Centaur Program.

These separations have commonly been associated with pins 1 and 8 that were the connections of

the 33-pf compensation capacitor. The analysis of the Centaur failure, which was completed in

early 1975, blamed the problem on faulty bonding processes. It is important to note that the

• Centaur bonding-post separation failures were discovered in piece part lots manufactured prior to

those used in ATS-6 hardware. Presumably, therefore, the source of the prior difficulties would

have been eliminated.

After the original failure, the roll wheel electronics worked properly on an intermittent basis.

The use of the DOC and the roll jets in overcoming the torquing limitations imposed by partially-

failed roll wheel electronics was referred to previously. When the SPS-2 negative-roll jet proved

inoperative in a test on February 19, 1977, the roll-attitude control situation became very serious;

only one unfailed negative-roll torquing component (the SPS-1 negative-roll jet) remained for

obtaining "normal" control. Contingency control plans, generated to maintain nearly normal opera-

tion despite even this last jet's failure, were previously presented under the heading "Use of Redun-

dant Actuators." Fortunately, this jet worked very well until July 13, 1979. The 180-degree flip

maneuver contingency technique was used from that time until the final spinup of ATS-6 on

August 2, 1979.

Polaris Sensor and Earth Sensor Anomalies

On October 19, 1975, the Polaris sensor assembly (PSA) was turned off as a result of anomalous

behavior extending over the preceding 9 days. The yaw inertial reference unit was then selected as

the yaw attitude sensor. The PSA was turned off and remained so until a turn-on during an end-of-

life test on August 2, 1979, just before the end of the active life of ATS-6.

The anomaly began on October 10, 1975, when the PSA's output became erratic, randomly varying

over its full output range of -+3.5 degrees. Some Earth-sensor output disturbances were seen. The

PSA's output then stabilized and the unit worked properly for 7 days after which erratic behavior

recurred. After 2 days of intermittent periods of correct/incorrect operation, during which there

appeared to be increasing effects on the Earth sensor, the PSA was turned off.



ATTITUDECONTROLSUBSYSTEM 75

An engineering team was formed to determine the probable cause of the failure and if the PSA

should be turned on again, in view of the potential damage to the Earth sensor assembly.

The probable cause of the failure of the PSA was corona/arcing in the intermediate voltage supply

(-700 Vdc) to chassis ground. The suspected voltages were those to the image dissector tube cathode

or focus. Either would explain the anomalous behavior of the tracker.

The possible causes were:

• A cracked printed circuit board ceramic stand-off terminal

• A void and/or contamination in a printed circuit board encapsulant

• A cold flow of teflon wire

• A partial pressure caused by outgassing.

An assessment of the PSA damage was:

• The cause of corona/arcing may be permanently established by carbonizing.

• The PSA logic circuits may be impaired, although this was not conclusive.

An assessment was made of the risks of turning on the tracker. If the arcing increased in severity,

there was the possibility of damage to, or interference with, other spacecraft components, as

demonstrated by the interference with the Earth sensor assembly. An investigation of the PSA cir-

cuitry showed that severe arcing of the cathode voltage could result in a capacitor discharge into the

signal ground that could couple into other spacecraft components and possibly cause permanent

damage. Arcing of the focus voltage would not be as severe, because the focus voltage was not

capacitor protected.

The erroneous outputs of the Earth sensor assembly (ESA) were caused by its scan mirrors reacting

to electronic noise on the signal ground lines. The noise was generated by PSA arcing. The history

of the attitude control subsystem (ACS) test indicated that the ESA was sensitive to ground noise.

Based on the importance of the ESA to the mission and the ability of the yaw inertial reference unit

to meet yaw attitude sensing requirements, it was decided to turn off the PSA until its turn-on

could either aid in completing the mission or, without danger to the mission, provide engineering

data for further failure analysis.

When the PSA was turned on, at the end of the mission, a failed response was again observed, for

its output appeared pinned at one end of the sensor's field of view and random erroneous values

appeared on the Earth sensor's output.
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Earth Sensor Assembly Roll Output Anomaly

At 2108 GMT, December 27, 1975, spurious ESA roll outputs were noted. These occasionally re-

suited in small (0.15 degree) roll attitude perturbations by the vehicle. Equivalent perturbations

were obtained through the remainder of the mission when ESA temperature was high.

A review of the ACS telemetry data for the period, plus additional data obtained during later peri-

ods, indicated that:

The roll output behavior was temperature related. When it occurred, it always happened

around spacecraft midnight, when the ESA temperature was peaking, particularly near

eclipse seasons.

High ESA temperature was not always accompanied by noise, indicating another input

was required to create the problem. Efforts to determine the input were not successful.

A correlation of ESA high temperature, non-ACS equipment being operated on boald

ATS-6, and ESA erratic behavior indicated the problem was independent of non-ACS

equipment when being operated.

The anomaly was not caused by sunlight reflecting into the roll head. During the umbra of

the second night of the eclipse season that began on February 28, 1976, a roll spike was

observed.

A short analysis of the ESA circuitry was made by its manufacturer to determine the source of the

intermittent radiance bias noted during the occurrence of the anomalies. It was concluded that

zener diodes and/or tantalum capacitors in the ESA's bolometer power supply could be the mal-

functioning elements.

Vehicle performance and operations were impacted little or not at all. Configuration of the ACS

into the jet-assist mode during periods of anticipated anomalies was restricted to prevent possible

unnecessary expenditure of gas.

Interferometer 2 Failure

After a few days of proper operation, interferometer 2 failed to respond to a turn-on command

until about 45 minutes had passed. This type of intermittent operation occurred several times be-

fore a final refusal to turn-on about 5 weeks after launch. When on, the unit performed perfectly.

Analysis and bench-testing revealed no clear cause of the problem although there is some belief,

based on similarity to other failure symptoms, that the cause was a poor solder joint in the
electronics.
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Pseudo Anomalies

Polaris Sensor Assembly Tracking Anomalies

On May 31, 1974, the Polaris sensor assembly (PSA) was activated and successfully acquired and

tracked Polaris. However, the unit appeared to be tracking particles assumed to be products of out-

gassing. The PSA was then powered down and reactivated on June 2, 1974. Polaris acquisition and

track was again successful, but similar tracking anomalies were again observed. This tracking often

spanned the full PSA output range of -+3.5 degrees and often resulted in loss of acquisition of the

star Polaris by the PSA. When in the yaw-control loop, the resulting spacecraft yaw attitude errors

were usually of such short duration (less than 1% minutes) that they did not affect experiment

performance. On those occasions when Polaris acqlaisition was lost, the DOC automatically selected

the yaw inertial reference unit as yaw sensor. When Polaris was again acquired, either because of

natural vehicle motion or ground-commanded reorientation, the PSA was automatically reselected

as yaw attitude sensor.

Two causes were suggested: (1) Sun reflections into the PSA image dissecting tube from various

reflecting surfaces, and (2) Sun reflections off particles resident in the field-of-view of the PSA. The

sensitivity of the PSA to such stray light sources is illustrated by this example: if illuminated by the

Sun, a 0.001-inch diameter particle, with 10 percent reflectivity, placed 20 feet from the PSA causes

the PSA to see a brightness equivalent to that of Polaris.

A review of the data indicated the following:

• A sharp drop in anomaly rate with time observed as indicated by the following table:

Date

June 5 to June 25, 1974

August 21 to September 10, 1974

November 4 to November 24, 1974

January 30 to February 19, 1975

April 8 to April 28, 1975

Mean anomalies/day

19.1

6.7

1.1

0.8

1.07

• The direction of tracking during anomalies was mainly from east to west during spacecraft

morning and from west to east during spacecraft afternoon.

A daily variation in PSA intensity outputs (Figure 1-20) due to the star field and the tem-

perature of the PSA is equivalent to an anomaly susceptibility curve because near the

intensity peaks only small changes in incident light are needed to trigger flyback and sweeps

(i.e., one form of anomaly).

The prelaunch PSA calibration overestimated the output response to excitation by Polaris,

so that the tracker's actual output, when tracking Polaris, was equal to that expected when

tracking a star with Lntensity 0.45 tLm._esthe Ln.tensity of Po!_s.
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Conclusionsof theanomalyanalysiswere:

• Reflections from particles constituted the major cause of the initial PSA anomalies.

• Most of the continuing PSA anomalies were the result of solar reflections (after one

"bounce" in the PSA baffle) due to ATS's north solar array and parabolic reflector.

The flyback and sweep threshold voltage of 4.0 volts in the PSA was too low; a higher level

would have eliminated large changes in PSA output in response to small incident light per-

turbations.

• The anomalies were not the result of abnormal PSA performance.

It is interesting to note that the observed anomalies were anticipated before launch-when the yaw

inertial reference unit was considered as an alternative to a redundant PSA there were discussions

about "erroneous tracking" due to "30-ft disk reflections or Velcro, Kromelar, dust, or ion engine

particles."

In terferometer Loss-Of-Lock

On June 8, 1974, with the interferometer in control, the signal level from the ground transmitter

at Rosman dropped. This resulted in the interferometer transmitting a constant value representing

attitude to the DOC. In normal response to these attitude "outputs" the DOC generated "hard"

drive signals to the wheels that eventually moved the spacecraft off the Earth, requiring its reacqui-
sition.

To prevent a recurrence of this action, the DOC flight computer program was reprogrammed to

recognize a 14-time repetition of fixed counts from the interferometer (and by inference, loss of

good data) and to generate a critical fault. With a critical fault, the DOC stops issuing torquer com-

mands, places the wheels into a hold mode, and sends telemetry indicating the critical fault. The

resultant low spacecraft drift allows the ground operations personnel time to react and take appro-

priate action to prevent loss of Earth .acquisition.

The particular characteristic of attitude perturbation due to an interferometer with lost-lock was

recognized well before launch. Alarming the ground control center was proposed as a solution, but

the necessary changes were not made. Monitoring reliance was placed on operating personnel.

Earlier when the flight computer program was being generated, the solution eventually employed

could have been used. But no action was taken, probably because this was a misinterpretation of the

meaning of the "validity" bit in the interferometer's output to the DOC. The validity bit, equal to

one in the interferometer's output data word, was meant to indicate that the interferometer's out-

put register was in a stable rather than unstable state, not that the output data was good.

Earth Sensor Assembly Roll-Scan Anomaly

On May 1, 1975, Earth acquisition was temporarily lost when the Earth sensor assembly (ESA) roll

output "hung up" and caused the DOC to drive the spacecraft off the edge of the Earth. At the same
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time, the ESAtemperatureappearedto behigherthanpreviouslyobserved.As aresultof detailed
analysisby the analysisgroup,it wassubsequentlydeterminedthattheESAhangupwascausedby
a uniquesetof flight conditionsthat wasbeyondthecapabilityof theESASun-avoidancefunction
(i.e., not dueto componentfailureor degradation),andthat the ESAtemperaturewasnormalfor
the existingflight conditionsand not due to failureor degradation.Furthermore,therewasno
relationshipbetweentheroll-scananomalyandtemperature.

The roll-scan anomaly began at 0610 GMT. The spacecraft was being slewed from +10 degrees in

pitch to -10 degrees in pitch at a constant roll angle of approximately -5 degrees. Toward the end of

the slew, the ESA roll output froze at -4.97 degrees. Offset-point-angle track was commanded at

061200, a new input data block 4 (angle track[slew data) was commanded at 061230. This resulted

in a new ESA roll-command angle. The combining of the new command angle with the frozen ESA

roll output resulted in a roll-torque command that drove the spacecraft off the Earth. ESA Earth

acquisition was lost at 0627. Reacquisition was accomplished at 0722 using the Sun sensors and

interferometer as reference sensors. The ESA then appeared to be operating properly and was com-

manded back into the control loop. It has operated properly since that time.

Subsequent investigation showed that the problem was caused by the inability of the ESA Sun-

avoidance function to operate at the extreme pitch angles (i.e., nearly equal to -10 °) that existed at

the time the Sun came into view of the ESA roll-scan plane. Normally, the roll-scan plane would

shift away from the approaching Sun until it reached +3.5 degrees, at which point it would auto-

matically jump-shift back to -3.5 degrees (i.e., a delta of 7 degrees), thus avoiding the Sun. However,

the roll-scan plane was already shifted approximately 10 degrees (due to the pointing angle) and it

was limited to a total movement of approximately 11.25 degrees. Therefore, it was only able to

initially move +1.25 degrees, which was insufficient to successfully avoid the Sun (the ESA Sun-

avoidance Sun sensor field-of-view was 6 degrees). Since the presence of the Sun in the ESA Sun

sensor field of view prevented the ESA output counter from updating, the counter essentially "hung

up" and induced the sequence of events described above. The combinations of spacecraft attitude,

Sun elevation (i.e., time of year), and Sun azimuth (i.e., time of day) that can cause this condition to

occur are relatively rare and predictable and did not recur during the remainder of the ATS-6 mission.

Digital Operational Controller Command-Angle Anomaly

Shortly after the DOC was put into control, pitch attitude and yaw attitude command-angle anom-

aries were observed in both DOC's twice each day. The phenomenon was observed only during nor-

mal operations in the offset-point-ground-coordinates mode at approximately 13: 20 GMT and 12

hours later at 01:10. At these times, the pitch-command attitudes would change polarity and the

yaw-command attitudes would change in magnitude by ±0.75 degree. The command errors were

transient in nature and were such that the incorrect commands were issued by the DOC's for

approximately 3 3/4 minutes. After this interval, the correct command angles would be issued until

the next occurrence 12 hours later.

The command-angle discrepancies were isolated to an overflow in the register for one of the elements

of the inertial-to-local-vertical transformation matrix. On the assumption that the cause of the

overflow was the result of a division, the DOC was reprogrammed to eliminate overflow due to that
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cause. The reprogramming was successful in eliminating these anomalies for about a year and a half,

when the pitch-command anomaly returned. A review established that the sign reversal of the tom-

re'and angle was due to an overflow, this time due to an addition calculation. Analysis showed the

source of the difficulty to be finite word length in the DOC; i.e., all numbers could not be repre-

sented exactly, in particular the value 1.0 in DOC had the value 0.99996948. A routine in DOC

normalized a vector magnitude to one, given three vector components. The normalization could

lead to component lengths greater than one, which in the 2's complement representation of numbers

in DOC would, with overflow, result in a sign reversal. By arbitrarily altering the vector components

by the factor 1 - 2 is - 2 -t4, the problem disappeared. This approach was employed and proved

successful through the remainder of the ATS-6 mission.

Moon Interference in the Earth Sensor Assembly Field-Of-View

Prior to the launch of ATS-6, there was considerable discussion on possible effects of the Moon in

the Earth sensor assembly (ESA) field-of-view, i.e., whether or not the angle subtended by the Moon

as viewed from ATS-6 would be sufficiently large to have any detectable effect on ESA error proc-

essing. A brief description of the physical observations confirming the Moon's influence on normal

ESA operation, the technical rationale for interferences, and some comments on impact to space-

craft operations follow.

The ESA was a two-axis (roll/pitch) scanning optical sensor capable of sensing infrared radiation

from the Earth and its atmosphere. The ESA included two identical heads mounted on the Earth-

viewing module. The heads were mounted at right angles to each other, so that the roll head scanned

north/south in the YZ plane and the pitch head scanned east/west in the XZ plane. Each unit (or

head) consisted of a lens-filter-bolometer detector, scanning mirror, and an offset mirror. The elec-

tronics package completed the ESA. In the normal operating mode, the ESA scanned through the

major diameters of the Earth at a rate of 4 Hz. The scanned field-of-view was -+13 degrees and was

automatically biased so that the Earth was always centered within the scans as long as both the roll

and pitch errors were less than -+11.25 degrees.

ESA error computation was achieved by an encoder physically attached to each scan mirror. The

encoder determined the angular scan position and reference null crossing. When the radiance thres-

hold criterion was met, the electronics accumulated encoder pulses by an up/down count, with

counter direction determined by the sequence of events.

Consider now what occurred when the Moon passed through the ESA field-of-view. The instantan-

eous bolometer field-of-view was approximately 0.6 degree and the lunar disc as viewed from the

spacecraft was approximately 0.5 degree. When the Moon lay within the scan plane of either roll

or pitch and its radiances exceeded the threshold, additional counting occurred, making the Earth

appear as if it were wider than it actually was. In this case, the attitude error was derived from both

bodies. With a full Moon entirely in the bolometer instantaneous field-of-view, the apparent delta-

width was approximately 1.1 degrees. The ESA interpreted this delta as an attitude error in the

affected axis and the spacecraft would attempt to null the error. The magnitude of the resulting

error could vary depending on several factors such as the Moon's phase, the location within the

scan, and the Earth/Moon radiance threshold sequence.
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The frequency of lunar interferences was approximately 60 a year with duration time per inter-

ference ranging from 4 to 22 minutes. While periodic lunar interferences were annoying, they pre-

sented no real problem to online spacecraft operations. Computer-generated "predicts" were avail-

able at ATSOCC to alert personnel on the ACS console to pending interference times. The only

effects on operations were minor perturbations in roll or pitch of spacecraft attitude lasting for the

duration of the transit period.

As noted in the previous paragraph titled "Use of Redundant Sensors," avoidance of Moon inter-

ference effects by use of the interferometer was available to (but usually not used by) ground per-

sonnel, because the inconvenience associated with interferometer use was greater than the incon-

venience of dealing with the effects of the Moon's interference.

C-Band Monopulse Anomaly

On July 4, 1974, a 24-hour test of C-band monopulse operation was performed with the goal of

determining the monopulse misalignment with respect to the interferometer and to measure the

diurnal variation in that misalignment. Test results indicated pitch misalignments of 0.03 to +0.05

degree and roll misalignments approximately sinusoidal over 24 hours.

Four losses of monopulse control at the nominal control attitude were experienced during the test:

two were the result of ground station loss of signal; and without apparent cause, two occurred near

spacecraft dawn and dusk. To determine the reason for these results, a test survey of monopulse/

interferometer outputs was made of +1 degree field about Rosman, North Carolina. Roll and

pitch contour maps of monopulse outputs were generated; an overlay of roll and pitch zero-voltage

outputs is presented in Figure. 1-24. When the monopulse was used as the ACS pitch/roU attitude

sensor, the ACS tended to converge to a point where the monopulse pitch/roll lines intersected was

a potential convergence point. Also indicated on the overlay are arrowheads indicating the direction

in which the ACS converged. Five locations were found to be convergence points. These points have

been designated S 1-S s on the overlay. The locations are at coordinates:

Point Roll Pitch

S t -0.18 -0.03

S2 -0.11 -0.38

S3 -0.53 -0.48

S, -1.00 +0.52

S 5 +0.75 0.20

The most significant element demonstrated was the inherent coupling between monopulse roll and

pitch outputs. Secondly, the sensitivity of the locations of the convergence points to small changes

in pitch or roll patterns can be seen.
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During the first control loss, the spacecraft moved from S t to S 3, at a loss in C-band uplink it

moved from S 3 to S5 (then at roll = 0.5 degree, pitch = 0.5 degree), and during the second control

loss it moved from Ss to S 1. The moves from $1 to S3 and S 5 to S 1 followed changes in roll wheel
sense of rotation. Apparently, the change in roll attitude (required to supply the reversed wheel

friction and windage torques) was enough to instigate the transfer towards the next stable control

point.

While further operations with C-band monopulse were completely successful, it was concluded from

this test that C-band monopulse as used in the control loops could only be used with caution. The

source of the diurnal effects, whether temperature changes in the equipment or deformation of the

30-ft reflectors, was never satisfactorily resolved.

CONCLUSIONS AND RECOMMENDATIONS

Basic Design/Operations Considerations

The ability of the ACS to meet or better its specified mission performance requirements over ex-

tended periods of time and despite component anomalies was primarily the result of three charac-

• Complete functional and standby redundancy

• Capability of ground operations to reprogram the DOC in flight

• Easy and rapid interplay between ground operations and the operating spacecraft sub-

systems.

Specific examples of the benefits of these features are next described.

Functional and Standby Redundancy

• Rate gyro assembly (RGA) 2 was substituted for RGA 1 after anomalous performance.

• After the Polaris sensor assembly (PSA) was deactivated, yaw information was provided by

the yaw inertial reference unit (YIRU) and digital Sun sensors (DSS).

DOC Command Reprogram Capability

After launch the digital operational controller (DOC) program changes included: (1) logic to verify

the probable correctness of interferometer data tagged VALID, (2) a counter recording the total

number of DOC-command jet pulses, (3) new control modes (mixed wheel/jet and jet assist), (4)

calculations of yaw attitude from Earth sensor assembly (ESA) and interferometer data, and (5)

revision of attitude control subsystem (ACS) deadbands as required.

teristics:
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Manual Interaction During Automatic Operations

• Wheel unloading and setting of wheel speeds at desired values was achieved through man-

ually instigated jet firings.

• Re-referencing the YIRU was accomplished by ground commands.

• Jet actuated slews were implemented by ground commands when the roll reaction wheel

torque capability was inadequate.

• Command changes in normal ground-point targets were made to compensate for trans-

mitter antenna misalignment and yaw errors.

Clearly these system characteristics should be retained in any similar future spacecraft. Furthermore,

based on the actual ACS flight experience, several proposed changes should be considered for pos-

sible future ACS designs of this type:

The ESA could have been made self-redundant with some degradation in accuracy after

failure. This could have been accomplished by using the two heads yielding pitch and roll

separately but coupled as presently implemented. If one sensor head or its electronics

failed, the operating head could be put into a scan-plane offset mode (similar to the existing

roll scan-plane mode). The sensor outputs could then be processed to provide both pitch

and roll information. The Earth sensors on the Communication Technology Satellite

operated in this manner.

When the roll inertia wheel electronics failed, it failed in such a manner that power could

still be applied rather than in a shorted condition. If the latter had happened, or one of the

inertia wheel coils had shorted, all of the wheels would have been disabled. The common

power interface circuit (PIC) that supplied all these circuits should have been separated to

eliminate such common failure modes.

One mode of achieving additional sensor redundancy in all axes, was not implemented.

This mode, in which the DOC would use the complete interferometer outputs based on

two ground transmitters, would provide roll, pitch, and yaw outputs in a manner similar to

that achieved by the combination of ESA and interferometer signals.

The YIRU was torqued either impulsively (by angle reference pulses) or continually (by

bias rate commands) by ground command only. No DOC-YIRU connection existed to

allow torquing under DOC command. Had that connection existed, a sharp reduction in

YIRU ground command operations could have been achieved.
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Additional Design Considerations

Moving Element Reliability

Five attitude control subsystem elements used mechanically moving parts: the inertia wheels, the

rate gyro assemblies (RGA), the yaw inertial reference unit (YIRU), the Polaris sensor assembly

(in its Sun shutter), and the Earth sensor assembly. In these, three had continuously rotating ele-

ments and four had oscillating components. Ball bearings, air bearings, and flexible pivots (in the

Earth sensor assembly) were used. No failure of a moving element or degraded performance was

observed. Over the life span of ATS-6, there was a slight increase noticed in the reaction wheel

friction and windage torque (0.05 to 0.15 in.-oz, depending upon speed), and a YIRU uncompen-

sated drift rate change of less than 0.05 degree per hour (the maximum rate was 0.1 degree per

hour). A possible failure exception was the rate gyro assembly 1 (roll gyro) whose output bias hang-

off at initial Earth acquisition was ascribed to failure in the gyro's output electronics. All wheels,

the YIRU, and the ESA were operating throughout the life of ATS-6. No turnoffs of the YIRU or

ESA were permitted during useful ATS-6 life, but a number of successful YIRU on-off cycles were

achieved during the end-of-life tests.

To permit some future life testing, the YIRU, ESA, and PSA shutter power was kept on at the con-

clusion of the end-of-mission tests with the spacecraft spinning about its roll axis at 1.6 rpm.

Comments on Monopulse

Of the three monopulse systems on ATS-6, only the S-band was completely successful-it provided

successful pointing to fixed ground transmitters and airplane-borne and satellite-borne transmitters.

After the PSA failure, closed-loop pointing to the signal source was particuarly valuable because it

eliminated dependence on tight yaw axis control accuracy ordinarily required during satellite track-

ing, that was achieved by following trajectory commands computed onboard.

The vhf monopulse output signals were somewhat disappointing because their slopes were about

one-third to one-fifth of their nominal values, with even poorer slopes about zero. With the built-in

control gains, the resultant steady attitude errors were acceptable, but the dynamic response was

only marginally satisfactory. Reprogramming the DOC to improve control could have been done,

but the analog backup controller loops were hardwired and, therefore, fixed. (Higher vhf gains were

obtained with favorable results by using S-band and C-band gains when receiving a vhf signal.)

C-band control operation suffered from a very small initial acquisition range and the problem of

potential shift in equilibrium control from one stable point to another due to the narrow beamwidth

and coupling between pitch and roll outputs.

In using the monopulse-generated signals, there was completely normal action of the control system.
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Usefulness of Interferometer

In all its applications, interferometer 1, the survivor of the original pair, performed flawlessly. Its

high resolution (one vernier count = 0.0014 degree) and low noise characteristic made it particularly

useful for evaluating the attitude control subsystem performance. Its wide field of view aided Earth

reacquisitions as required throughout the mission.

The interferometer specification for 3-siena performance in pitch and roll was -+0.018 degree or

-+12 counts over the dynamic range of 40 dB (-55 dBm to -95 dBm). Test verification at -70 dBm

into the receiver/converter yielded 3-sigma performance in pitch and roll of -+0.007 degree or +4.8

counts. No significant change in performance with power input was noticed.

A particularly useful feature of the intererometer design was the ability to calibrate before-launch

and in-orbit output changes (i.e., bias changes) without changes in input. During in-orbit calibration,

after adjustments were made for receiver/converter temperature, the interferometer showed worst-

case total receiver/converter bias changes of five counts in coarse mode and one count in vernier

mode from those recorded prior to launch. As a result, the boresight bias counts loaded into DOC at

launch required no change.

The interferometer and the Earth sensor assembly (ESA) were available as independent pitch/roll

sensors. Attitude determinations by the ESA and the interferometer differed over ranges of +0.15

to +0.3 degree in roll and -0.10 to +0.21 degree in pitch compared to prelaunch misalignment meas-

urements of-0.00 degree and +0.13 degree, respectively. The portion of these differences due to

variation in interferometer output (temperature, attitude, etc.) that was calibrated is much less

than the observed differences; thus, there remains a residual uncertainty as to the absolute accuracies

of both the ESA and the interferometer.

Although not designed for use with modulated uplinks before launch, the question was raised

whether or not the interferometer would also function properly using modulated uplink signals,

with no resolution due to the difficulty in conducting a definitive analysis or ground test to deter-

mine the answer. On February 16, 1975, a series of flight tests were conducted on the interferom-

eter, using carder wave and various modulated uplink signals from the Rosman Ground Station, to

resolve this question.

Test results showed that interferometer operation was significantly and adversely affected by the

presence of the Satellite Instructional Television Experiment (10 MHz p-p deviation) and the Health,

Education, Telecommunications experiment (20 MHz p-p deviation) modulation signals on the C-

band uplink carrier. The use of the noisy interferometer signal in the control loop caused rapidly

alternating wheel torquing, so that attitude control subsystem interferometer operation in the offset-

point/ground-coordinates mode was unacceptable because prolonged operation could lead to failure

of the actuator control electronics due to overheating. The low-pass filtering in the low-jitter mode

control loop permitted functionally acceptable operation although pointing errors were in excess

of specification requirements.
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Interfaces With Digital Operational Computer

In concept the digital operational controller (DOC) was a digitized analog backup controller (ABC)

with the advantages of superior computation capability, programmability, and digital-to-analog/

analog-to-digital conversion. Like the ABC, it received analog signals and issued analog and on-off

commands. Each controller's input sources and output receptors were fixed by hardware connection.

These latter characteristics in the DOC prevented desirable system changes when the yaw inertial

reference unit replaced a redudant Polaris sensor assembly late in the design cycle.

A next generation improvement to the DOC is represented by the control and data handling system

developed for the multimission modular satellite program. This system employs a single general-

purpose digital interface with its computer and links that interface with sensors and actuators by

electrical busses. Adding new system components is achieved by coupling new interfaces to the

bus, remotely, as required.
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CHAPTER 2

SPACECRAFT ATTITUDE PRECISION POINTING

AND SLEWING ADAPTIVE CONTROL EXPERIMENT

INTRODUCTION

The purpose of the Spacecraft Attitude Precision Pointing and Slewing Adaptive Control (SAPPSAC)

experiment was to establish the feasibility and to evaluate the performance capabilities of attitude

control in real time of ATS-6 using computer facilities located on the ground. Attitude control

included maneuvers in precision pointing to fixed Earth targets, slewing between targets, and the

generation of prescribed ground tracks.

There were felt to be several significant advantages in using a ground-based control system. The cost

of implementation was much less than that for a comparable spacecraft system, the equipment was

easily accessible for maintenance, and the equipment had the ability to be time shared or to be

reassigned to other functions depending upon the mission requirements.

By using the rf command and telemetry links with ATS-6 in conjunction with the computer at the

Earth station, a continuous closed-loop control function was achieved. This control feature also

allowed the onboard spacecraft control equipment to be used as a backup system in the event of

failure of the ground system.

The Earth station facilities for performing the SAPPSAC experiment was located at the Rosman,

North Carolina, tracking station. This station had the capability of performing online, real-time

processing of spacecraft sensor data and the generation of on/off commands for the spacecraft

torquers. The SAPPSAC ground controller was continuously monitored and accepted commands

for spacecraft control from either the ground station or from the remote terminal at the Applica-

tions Technology Satellite Operations Control Center (ATSOCC) located at the NASA Goddard

Space Flight Center in Greenbelt, Maryland. With each of these terminals containing a computer

and command/telemetry interface equipment, a redundancy of the terminal facilities was provided

that increased the reliability of continuous SAPPSAC control. The remote ATSOCC terminal

performed as a centrally located source for the selection of command modes and for monitoring

the performance of the experiment.

SAPPSAC EXPERIMENT

The SAPPSAC experiment was developed to perform closed-loop attitude control of ATS-6. The

experiment included provisions for online determination of spacecraft position and velocity using

two interferometer beacons and the Earth sensor. The SAPPSAC ground controller was a PDP-

11/20 minicomputer at the Rosman Ground Station performing online, real-time processing of

spacecraft sensor measurements extracted from incoming telemetry and generation of on-off

89
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commands for selected spacecraft torquers for transmission through the ground attitude control

(GAC) uplink. There were provisions for continuous monitoring and commanding of the ground

controller using a SAPPSAC remote terminal located in the ATS Operations Control Center (AT-

SOCC). The SAPPSAC remote terminal employed another PDP- 11/20 computer in ATSOCC coupled

to the ground controller by modems and bidirectional landlines.

SAPPSAC imposed no special spacecraft subsystem requirements other than the GAC decoder and

interface to the actuator control electronics. The experiment was designed to use either onboard

momentum wheels or the backup hydrazine reaction jets for attitude control. A unified algorithm

was employed in the ground controller to determine both 3-axis attitude and spacecraft position,

using combinations of onboard sensors (Polaris tracker, Earth sensor, and two-channel interferom-

eter, with optional use of the yaw inertial reference unit). This information was extracted by the

controller from the normal telemetry stream.

PROBLEM AREAS

The use of this concept brought about certain unique problems and design constraints:

There were known one-way link transport delays ranging between 0.129 and 0.500 second.

This limited feedback-control applications to frequency response of about 1 hertz or less

without online state estimation and prediction models.

• Online ground control required a new consideration of link reliability over and above that

applicable in the conventional sense.

• Rf linkages, operating over large bandwidth or high duty cycle, could introduce serious

problems in the use of the rf spectrum and possible interference with other users.

There were unique problems associated with the development and operation of ground

terminals for dedicated online control. Many of these problems were quite similar to those

encountered by electric utilities dealing with substation design, load distribution and

sharing, and maintenance.

• There was the possibility of rf interference (or jamming) that could degrade the command

uplink.

EXPERIMENT OBJECTIVES

The baseline objectives of the SAPPSAC experiment were as follows:

a. Extended term 3-axes attitude hold

b. Extended term reliability of command and telemetry links
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c. Interchangeability of multiple sensor combinations

d. Point-to-point slew maneuver capability

e. Ability to follow a predetermined ground track

f. Tracking of flight vehicles

g. Ability to maintain attitude during orbit corrections

h. Ability to identify and track program parameters

i. Use as a diagnostic tool to evaluate spacecraft performance

j. Pointing vector alignment capability to a prescribed attitude reference

k. Real-time orbit determination using two interferometer stations and an Earth sensor

1. Ability to maintain attitude control during brief open loop operation.

91

All of these objectives were successfully demonstrated except (f) and (g) for which there were no

tests scheduled. A limited amount of data was available for objective (k) due to the failure of the 1"2
channel in the spacecraft interferometer hardware.

SYSTEM DESCRIPTION

Spacecraft

The only additional units required in the spacecraft for this system were a ground attitude control

(GAC) decGder and an interface to the actuator control electronics. The GAC characteristics were as

follows: (1) Addressed one, two, or three axes at a time; (2) responded to transmission instanta-

neously; (3) commanded wheels or jets; and (4) commanded length multiples of 11 milliseconds (ms)

(jets 100 ms minimum). No modifications were permitted to the spacecraft onboard attitude control

system except the interface between the GAC decoder and torquers. The constraint was acceptable

for experiment verification, but the GAC/analog backup controller interfacing that would allow

freezing attitude control in the event of a ground controller or link failure would provide a more

complete operational backup system.

Grou nd System

Figure 2-1 represents an overview of the ground support equipment for the SAPPSAC Experiment.

The inputs to the system were the regular telemetry transmissions from ATS-6. The outputs were

the digital commands to the torquers in the spacecraft.
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The telemetry interfaces permitted simultaneous access to two data streams, normal and dwell. Nor-

mal telemetry contained all of the required sensor data needed by SAPPSAC for state measurements

and was updated every 3 seconds. Dwell was used solely for GAC command validation. The GAC

command encoder transformed torquer combination on/off digital words, obtained from the com-

puter, into a pcm/fsk/am signal that could be patched either to vhf or C-band uplink modulation/

transmission equipment. The GAC encoder read a 6-bit digital code from the computer every

10.8 ms, added a 7-bit address, and then transmitted the 13-bit command word to the spacecraft

at the rate of 1200 bits per second (bps). The 6-bit digital code (five data bits plus parity) specified

the on/off state for each of six different torque directions. The on-time duration was determined by

use of the GAC read pulse to down-count one of the computer real-time clocks.

In the vhf configuration, commands used a 2.5-kW (kilowatt) transmitter coupled to the ATS small

command antenna and were radiated as pcm[fsk/am/fm to the spacecraft. In the C-band configura-

tion, commands used an 8-kW transmitter coupled to the Rosman II 26-m (meter) parabolic antenna

and were radiated as pcm/fsk/am/fm to the spacecraft. The ground station computer used the duplex

digital data formatter encoder/decoder equipment for communications with ATS Operations Con-

trol Center (ATSOCC). Normal commands were not processed by the SAPPSAC computer, but

were either manually loaded at the ground station encoder or transmitted via the modem/duplex

digital data formatter interface directly to the normal command encoder where they were checked

and then transmitted to the spacecraft. SAPPSAC required normal commands for spacecraft sub-

system configuration. The SAPPSAC remote terminal used one of the ATSOCC PDP-11/20 com-

puters to monitor and control the ground station computer using the duplex modem ground lines.

The ATSOCC interface between the modem and computer used a data input buffer for incoming

transmissions and a data interface transmitter for outgoing transmissions.

SAPPSAC COMPUTE R PROG RAM

The purpose of the SAPPSAC program was to issue spacecraft torque commands as computed by

one of the available control laws, to monitor its input-output sequences, to guard the safety of the

spacecraft, and to record sufficient information for postflight analysis. The program was a sequence

of Fortran IV subroutines, collectively known as the main sequential program, (MASEP), invoked

by a real-time executive (SAPSEX). SAPSEX therefore was the real-time interrupt linkage to

MASEP, and all nonreal-time portions.

The following overall assumptions defined the program philosophy: (1) The SAPPSAC program

would run synchronously; (2) SAPPSAC computations would be performed at the ground station

within the interval of two telemetry minor frames decreased by uplink and downlink delays; (3)

torquer pulses would be initiated on the spacecraft at the time of the spacecraft frame synch-

ronization pulse. Pulses could be terminated at any time; (4) Kalman filter techniques would be

used to compute state estimates; (5) all sensor information was taken at one time instant, TS

seconds (Figure 2-2) from frame synchronization generation; (6) maximum use of Fortran IV was

required for software development.

Timing of the program and synchronization with events on the spacecraft were the heart of the

SAPPSAG concept. Tha hnci_ _.q,,..o..e ..... +_ ;o oh..... • _: .... - - *,, *:---"....................................... v _= *..,*vat_,a .to o.t,tuvvi,t In • I,_LaJ._, /...-_.,. /'_.ll tlllllll_ Wi;l_ IUUICl..UU. to
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Figure2-2. SAPPSACTiming Diagram

the telemetry stream by means of an interrupt generated when the normal telemetry synch code

was detected. Time-out was provided by the internal executive clock if an interrupt was not received

within a period of seconds of its expected occurrence.

The program consisted of 17 specific operations starting with a quality check of the received

telemetry signal. A mathematical model was used in the program to estimate the required action

of the torquers for a 6-second update to produce the desired spacecraft state. The model included

wheel speeds, a jet firing history for each jet, adaptive multipliers for the nine torquers (jets and

wheels), and the spacecraft rotational dynamics.

TEST RESULTS

Introduction

Nine of the original 12 experiment objectives were successfully demonstrated during the test pro-

gram. No testing was performed to assess the reaction jet attitude control capability of SAPPSAC

because of constraints imposed in conserving onboard propellant.
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The SAPPSAC experiment successfully completed support of the in-orbit operations for ATS-6

during the first 30 days following launch. The effort included online attitude determination at the

Rosman Ground Station using the SAPPSAC PDP-11 computer during the first 5 days of checkout

in orbit. This was followed by subsequent offline data analysis at Goddard Space Flight Center per-

taining to preliminary attitude sensor evaluation and interferometer bias determination. The follow-

ing onboard sensors were evaluated: Yaw inertial reference unit, Earth sensor, Polaris sensor, and

interferometer. Online attitude determination using the Earth sensor and interferometer successfully

tracked the yaw reference maneuver (roll, pitch, and yaw attitudes). Both single-station and two-

station interferometer tests were performed with the Earth sensor and near-local vertical conditions.

Using the Earth sensor/F1 interferometer, Earth sensor/F2 interferometer, and F1/F2 interferom-

eter, it was found that the 3-axis attitude determination performed were in agreement to within

0.02 degree in roll, 0.06 degree in pitch, and 0.6 degree in yaw using zero bias corrections (preflight

reference for SAPPSAC).

Extended Term Three-Axes Attitude Hold

SAPPSAC demonstrated the ability to hold yaw attitude to within 0.2 degree of reference through-

out the tachometer dropout region (near-zero speed regime for the inertia wheels). Control used the

F 1 interferometer and Polaris sensors in a 30-second update. Disturbance acceleration gains were

zeroed through the dropout interval and then reactivated once stable attitude was regained. This

performance is significant because the yaw axis produced the largest excursions of attitude due to

the tachometer dropout condition. Excursions of attitude for a given control update are inversely

proportional to the moment of inertia in each axis. The smallest inertias (yaw axis), for example,

will produce about twice the attitude excursion of the roll axis. Therefore, one could expect roll-

attitude excursions of about 0.1 degree for the same control interval. It was found that stabilization

performance for the 30-second control update was nearly the same as found during hold-mode per-

formance using a 48-second update.

The longest single online attitude hold test lasted approximately 8 hours. With the exception of

slight attitude excursions, when the wheel speeds went through zero, a high degree of attitude

stabilization was demonstrated. The attitude excursions were held to 0.004 degree in pitch and roll,

and 0.016 degree in yaw during a 43-minute segment of this 8 hours. For short durations of time

(i.e., 5 minutes), very precise attitude stabilization was obtained; 0.002 degree in roll and pitch.

This was limited primarily by available sensor characteristics (quantization and noise) and pulse

modulator behavior and not by the command link response capability.

Extended Term Reliability of Command/Telemetry Links

During the test period, 50 hours of operation was logged using the ground attitude control com-

mand link at either vhf or C-band frequencies. In this period, the links exhibited excellent reliability

because there were no detected dropouts or inhibit conditions, even during intervals of station

microwave interference. More than 100 hours of telemetry data were logged by SAPPSAC where

the data reliability was found to be excellent. There were only very occasional noise bursts that had

no degrading effect upon operation of the ground controller.
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Point-to-Point Slew Maneuver Capability

Several small angle slew tests were performed. Performance was 10 percent better than predictions.

Overshoots in latitude and longitude were generally less than 3 percent of the slewing distance.

In initial tests, SAPPSAC successfully demonstrated slewing capability in the vicinity of the local

vertical. Eight small angle maneuvers were conducted (1 degree in both pitch and roll angles),

followed by individual larger slews of 2 degrees and then 4 degrees. Each maneuver had specified

pierce-point coordinates (Z body axis/Earth intercept) and maximum body rate limits as com-

manded by the SAPPSAC computer input. A final slew to local vertical was followed by activation

of an adaptive feature of the state estimator, which performs identification of unmodeled distur-

bance torques on each of the three body axes. The adaptive estimator functioned in an excellent

manner, as evidenced by slight changes in spacecraft pointing that rapidly converged to within 0.02

degree latitude and longitude of subsatellite coordinates obtained from orbit ephemerides. All slew-

ing maneuvers were performed using a 3.5-minute control update, and it was found in all cases that

no more than three updates were needed to complete a slew. Maximum latitude overshoot was less

than 0.3 degree, which was equivalent to approximately 0.05 degree in roll angle. Maximum lon-

gitude overshoot reached values as high as 0.8 degree that was equivalent to approximately 0.13

degree in pitch angle. It was observed that all easterly slews generated longitudinal undershoots,

whereas all westerly slews generated longitudinal overshoots. This was attributed to the presence of

unmodeled disturbance torques acting in the pitch axis, since the adaptive estimator had not yet

been activated.

In later tests, ground control employed a vhf ground attitude control unplink at 154 MHz. The F 1

interferometer channel was operational using the 25.9-m (85-foot) Rosman antenna to provide

attitude sensing capability and as a backup at C-band in the event of vhf link problems. At the con-

clusion of an initial local vertical hold, the first slew maneuver started with repositioning of the +Z

body axis to ground intercept points of +12 degrees (north) latitude and -82 degrees (west)longi-

tude. Following a brief hold interval at these coordinates, the spacecraft was commanded through a

slew to -12 degrees (south) latitude and -106 degrees (west) longitude. Following a third hold mode

interval, a slew was performed back to +12 degrees latitude, -82 degrees longitude. After a fourth

hold mode interval, a final slew was commanded back to local vertical, whereupon hold mode was

maintained until the test was terminated.

The adaptive disturbances acceleration option was activated during these maneuvers to establish

what effect, if any, this would have upon slew behavior. It was found that the addition of the

derived disturbance torques had little influence upon the slew trajectories, other than to eliminate

any undershoot offsets in final targets. Maximum overshoot occurred in the largest slew maneuver

and produced 0.383 degree latitude and 1.22 degrees longitude values. The bearing angle was held

at all times to better than 0.35 degree from north. It was determined that a longer settling time was

required when disturbances were derived rather than fixed between slews. This was attributed to the

significant lag in identification of disturbance levels during a slew maneuver. In one of the maneu-

vers, the maximum rate retention level was increased. As one would expect, this improved the be-

havior because the finite-settling time control algorithm was based upon zeroing of errors in two

control updates. A comparison of sensed versus f'llter attitude indicated that the SAPPSAC state
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estimator was tracking actual deterministic attitude to better than 0.01 degree. In the hold mode

intervals, attitude errors were being driven close to zero as the disturbance levels settled out. Local-

vertical piercepoint values agreed well with those taken from the ATS-6 ephemeris predicts. There

was less than 0.02 degree error in both latitude and longitude.

Ability to Follow a Predetermined Ground Track and Large Angle Slew Capability

Two ground track maneuvers and a large angle slew maneuver were performed by SAPPSAC. The

two prescribed ground tracks were from near-local vertical to the Rosman Ground Station and from

Rosman to the Mojave Ground Station. The large slew occurred between Mojave and local vertical.

Figure 2-3 shows the above tracks and slew maneuvers. A roll maneuver was required for a change in

latitude and a pitch maneuver was required for a change in longitude.

The first ground track was performed using the Earth sensor/Polaris sensor combination. The maxi-

mum latitude or longitude deviation from the prescribed, time-tagged ground track (ignoring the

initial and final 2-minute periods) was approximately 0.14 degree (0.024 degree roll or pitch). The

reason for ignoring the initial and final 2-minute intervals is that the control interval (2-minute

length) and the time-tagged target table are not synchronized and hence there can be an initial lag

and another lag at the end. It should be noted that a time-tagged target table is essentially a satellite

track. If the time tagging is ignored, the tracking errors are slightly less and there is no large error

at the beginning and the end since these were due primarily to timing idiosyncrasies.

While pointing at Rosman, the sensor combination was changed to interferometer (F 1)/Polaris sen-

sor. For a 16-minute period, while holding at Rosman, the latitude (roll) excursions were within a

deadband of 0.051 degree (0.008 degree) and longitude (pitch) within 0.163 degree (0.23 degree).

During the track to Mojave, the maximum latitude or longitude errors from the prescribed, time-

tagged ground track were 0.15 degree (0.22 degree in roll or pitch). While holding at Mojave, the

latitude excursions were within a deadband of 0.013 degree (0.0019 degree) and longitude within

0.017 degree (0.0025 degree) for a period of approximately 8 minutes. The pointing error from

Mojave for this period was (+0.007 degree minimum, +0.017 degree maximum) in latitude and

(+0.111 degree minimum, +0.128 degree maximum) in longitude. The large angle slew back to local

vertical was performed nominally with overshoots of 1.24 degrees in longitude and 0.45 degree in

latitude. During the slew, the estimator tracked the sensor in roll with a maximum error of 0.055

degree.

The above-ground track tests demonstrated the capability of time synchronization of SAPPSAC as

required for satellite tracking and ground track pattern generation at prescribed maneuver rates.

Interchangeability of Multiple Sensor Combinations

During online control operations, SAPPSAC used three sensors: the Earth sensor, the Polaris tracker,

and the two-frequency interferometer. From these sensors there were six combinations that yielded

pitch, roll, and yaw. All combinations were successfully employed by SAPPSAC. In one test, the

excursions in pitch, roll, and yaw were held within 0.020 degree, 0.006 degree, and 0.15 degree,
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A simulated disturbance was introduced into the system to determine the ability of the system to

sense the disturbance and switch to an alternate sensor. While operating with the F 1 interferometer

and Polaris sensor control inputs, the SAPPSAC controller was commanded into the alternate sensor

select mode. A brief power outage was deliberately introduced into the Rosman C-band interferom-

eter uplink transmitter. The screening function immediately recognized unusable F1 data and

switched control to the next level which was the Earth sensor/Polaris sensor combination. This was

verified with the output displays. There was no noticeable perturbation in attitude control. The

power was then reapplied to the transmitter and screening again recognized good interferometer

data. This caused control to be switched back again to the F 1 interferometer/Polaris sensor combi-

nation.

In the other tests using the Polaris sensor/interferometer combination, it was found that with a

10-frame control update, SAPPSAC could achieve stabilization to within 0.02 degree latitude and

longitude of reference intercept coordinates 35.200 degrees latitude and -82.9 degrees longitude.

This produced short-term pitch and roll angle stabilization better than 0.003 degree. When con-

trolling with the Earth sensor/F 1 interferometer, it was found that an initial yaw bias of approx-

imately 0.1 degree was introduced. Further, greater noise was experienced in the yaw axis due to

magnification of Earth sensor noise when used to compute yaw. Stabilization in pitch and roll was

found to be similar to that obtained when using the Polaris sensor/F1 interferometer, wheras yaw

errors reached 0.05 degree. Because the interferometer F2 channel was not operational during this

test, SAPPSAC was unable to evaluate the remaining sensor combinations.

Spacecraft Performance Evaluation and Ability to Identify and Track Program Parameters

SAPPSAC demonstrated the ability to identify and track several disturbances acting upon ATS-6.

Modeled parameters included torquer characteristics for the momentum wheels, intertial cross

coupling of body rates, gyroscopic cross coupling, and the effect of gravity gradient torques. Un-

modeled disturbance accelerations were tracked for continuous intervals as long as 7 hours and

subsequent analysis isolated contributing effects from wheel rundown torques and solar radiation

torques (inferred). During a 46-minute open-loop test, attitude error buildup indicated torque

identification errors to be less than 2 percent.

The excellent ability of SAPPSAC to accurately track the state during open-loop tests is shown in

Figure 2-4. The data shows the unmodeled disturbance accelerations identified by the filter during

a SAPPSAC test. The approximate steady-state disturbance torques corresponded to 2.71 X 10-4,

-5.06 X 10 "4, and 0.04 X 10 -4 N.m (2.00 X 10 "4, -3.73 X 10 "4, and 0.03 X 10.4 ft/lb) for roll,

pitch and yaw, respectively. SAPPSAC was able to both identify and operate during various ano-

malies, including Polaris "hits" (tracking foreign objects), interferometer transients (ground trans-

mitter power surges, erratic behavior of F2 before failure and when the beacon was on a sidelobe),

telemetry dropouts, and excessive yaw-wheel rundown.

Pointing Vector Alignment Capability to a Prescribed Attitude Reference

The degree of stabilization of the pitch, yaw, and roll axes depends on the accuracy and stability

of the control functions which are a function of time. In one test that lasted 4% hours, stabilization
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Figure 2-4. Disturbance Acceleration Identified by SAPPSAC Filter vs. Time

interferometer and the Polaris sensor in control. Pointing vector alignment with respect to Rosman

intercept coordinates indicated a hold to within 0.01 degree throughout this interval. In another

test, SAPPSAC stabilized the spacecraft Z-axis to within 0.007 degree pitch and roll for a period of

43 minutes.

In a particular test, it was determined that SAPPSAC could maintain a local vertical pointing mode

for 2 hours. During this time, the following sensor combinations were briefly selected for control

computations; Earth sensor/Polaris sensor, Earth sensor/Rosman interferometer (F1), Rosman

interferometer (F1)/Mojave interferometer (F2), and Rosman interferometer (F1)/Polaris sensor.

Attitude pointing behavior was found to be stable and nominal for all sensor combinations except

Earth sensor/Rosman interferometer (F1), which exhibited a relative yaw bias. This behavior was

found to be in agreement with previous SAPPSAC launch support data that indicated that one

should expect a relative yaw bias of about 0.25 degree. It was demonstrated that SAPPSAC could

hold the spacecraft Z-body axis to within 0.04 degree roll and 0.05 degree pitch of local vertical,

while maintaining bearing within 0.25 degree of north. Attitude excursions peak-to-peak during the

same intervals were 0.02 degree roll, 0.04 degree pitch, and 0.07 degree yaw. This performance was

obtained with a control update interval of 1% minutes which can be decreased to obtain tighter

control. During this test SAPPSAC also demonstrated the ability to return to local vertical following

a short drift period to introduce attitude errors.
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Real-Time Orbit Determination Using Two Interferomater Stations and Earth Sensor

Very limited data was obtained for the orbit determination objective due to the failure of the F2

channel and the spacecraft interferometer hardware. The data that were available consisted of simul-

taneous telemetry from the Earth sensor and two-station interferometer that was used in a SAPPSAC

algorithm to determine spacecraft orbital position as a function of time. These data were compared

with a ranged orbit ephemeris near epoch for an interval of approximately 2 minutes. The following

results were obtained:

Longitude position error = -2.4 km

Latitude position error = -0.8 km

Radial position error = 0.4 km

The short span of data reduced gave a 70 percent confidence that the means were within 9 km in

longitude and latitude and 2 km radially. Much more data would have been required to determine

the stability of the interferometer biases and their effect on orbit determination.

Ability to Maintain Attitude Control During Brief Open-Loop Periods

During the course of the experimental test period, SAPPSAC operated without difficulty through-

out several periods of sensor anomaly (Polaris hits and interferometer ground transmitter transients).

In one reliability test, SAPPSAC operated in a mode that removed telemetry inputs from the con-

trol computation for a period of about 45 minutes. This simulated a condition where telemetry was

lost and control was maintained with predictions from the state model. It was found that attitude

errors grew to less than 0.5 degree in roll, 0.1 degree in pitch, and 0.4 degree in yaw. These changes

posed no problem in loss of sensor acquisitions and therefore demonstrated that SAPPSAC can

operate on its stored math model without telemetry for a duration of more than 1 hour. This should

permit adequate time to reconfigure ground equipment to restore spacecraft telemetry. Previous

tests had shown that without SAPPSAC ground attitude control commands, e.g., pure open-loop,

control could not be maintained for more than 15 minutes without danger of losing the Polaris or

Earth sensor acquisition.

CONCLUSIONS AND RECOMMENDATIONS

The overall objective of the SAPPSAC experiment was to evaluate the feasibility of a real-time,

computer-controlled ground system for long term attitude control and orbit determination of a

geosynchronous spacecraft through an rf command and telemetry link. The objective was fulfilled

by a demonstration of the following capabilities:

• Feedback Control

SAPPSAC demonstrated that link transport delays did not significantly affect control

capability for ATS-6. This was a result of the ability to accurately model plant dynamics,
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predict ahead in time to the point of application of control, and meter out a precise torque

on-time using the ground attitude control command uplink.

• Reliability

The command link was operated in both the vhf and C-band modes for approximately
50 hours with no errors detected.

The vhf telemetry link was operated for approximately 100 hours. Occasional drop-

outs were observed, but these had little effect on control.

SAPPSAC accumulated a total of approximately 30 hours online control with no sig-
nificant anomalies.

• Holding

An extended term attitude hold of approximately 8 hours was performed successfully.

Attitude excursions over a 43-minute interval were held to 0.004 degree in pitch and roll,

and 0.016 degree in yaw.

Attitude excursions over short durations of time; e.g., 5 minutes, were held to 0.002 degree

in pitch and roll.

• Pointing

Using the existing sensor calibration, SAPPSAC stabilized the spacecraft Z-axis for 43

minutes to within 0.007 degree in pitch and roll relative to prescribed Rosman coordinates.

• Slewing

Several small angle slews and one large angle slew (from Mo]ave to local vertical) were suc-

cessfully performed.

Overshoots in longitude and latitude were generally less than 3 percent of the slew distance.

• Tracking

Reference, time-tagged ground tracks were followed by SAPPSAC with errors less than

0.15 degree in latitude and longitude.

• Identification

Excellent identification and tracking of solar and wheel rundown torques were demon-

strated during a 46-minute open-loop test. Attitude error buildup indicated torque identi-

fication errors to be less than 2 percent.
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• Diagnostic Tool

SAPPSAC was able to identify telemetry dropouts, Polaris "hits" (tracking of foreign

objects), interferometer transients (ground transmitter power surges, erratic behavior of

f2 prior to failure and when the beacon was on a sidelobe), and excessive yaw-wheel run-
down.

• Interchangeability of Sensors

Online switching between the six available sensor combinations was performed while

maintaining precision control in pitch and roll.

• Orbit Determination

In offline evaluation, the Earth sensor/two-beacon interferometer sensor combination was

used to determine the ATS-6 orbit with a 70 percent confidence of about 9 km in the

latitude and longitude components and 2 km radially.
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CHAPTER 3

RF INTERFEROMETER EXPERIMENT

INTRODUCTION

The radio frequency (rf) interferometer experiment had the capability of providing a precision

measurement of the three-axis attitude of ATS-6 with a wide field of view of 35 degrees. The basic

function of the interferometer in the spacecraft was to measure the phase difference of either one

or both of two C-band carders transmitted from separated ground stations and received by two

antenna arrays whose orthogonal baselines were parallel to the spacecraft pitch and roll axis.

The resulting analog-phase data were converted into a digital format that was transmitted by the

interferometer high-speed data link to the Rosman ground station by downlink telemetry. These

data were also supplied to the onboard digital operations controller that converted the data into

spacecraft attitude information. For a known single uplink ground station signal, the antenna array

provided phase measurements that were converted into spacecraft pitch and roll attitudes. Two

known separated ground station carriers were necessary to provide phase information for deter-

mining the attitudes of all three axes of the spacecraft. Three-axis attitude could also be determined

by employing a single ground station carrier for establishing the pitch and roll angles, and the

Polaris tracker or Earth sensor for determining the yaw axis.

By employing two separated uplink ground station signals in conjunction with the Earth sensor data,

the spacecraft orbit position and its three-axis attitude were determined. With three known separa-

ted uplink ground station signals, one of which was time multiplexed with either frequency channel,

the orbit position and the three-axis attitude could also be established. An overall system functional

block diagram of the spacecraft and ground stations is presented in Figure 3-1.

The primary objectives in performing the ATS-6 interferometer experiments were as follows:

• Evaluation of spacecraft link performance and its two-axis attitude determirfation when

unmodulated carders are employed

• Evaluation of phase measurement and attitude performance for narrowband and wideband

carrier modulation

• Evaluation of performance for online spacecraft position determination, using a two-

frequency interferometer and Earth sensor

105
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Figure3-1. InterferometerExperimentConfiguration

The two ground stations that provided the uplink transmission channels at frequencies of 6.150

glgahertz (GHz) and 6.155 GHz were Rosman (North Carolina)and Mojave (near Barstow, Califor-

nia) respectively. Unambiguous space angles of up to approximately +17.5 degrees relative to the

boresight of either uplink station signal was measured with the interferometer. The tests used both

modulated and unmodulated carriers for the measurement of the attitude of the spacecraft.

SYSTEM DESCRIPTION

Spacecraft Equipment

The phase difference measurement of the received carrier wave, that was performed by the onboard

equipment of ATS-6, was accomplished with six horn antennas placed in the Earth-viewing module

(EVM) with an arrangement of three antennas along each of two orthogonal baselines that were

parallel to the spacecraft pitch and roll axis. A physical layout of the horn antenna configuration in

the EVM is shown m Figure 3-2. One horn antenna provided the reference signal (Pr) while the

remaining two antennas provided the coarse (Pc) and vernier (Pv) phase measurement.
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The coarse baseline had a dimension of 8.105 cm or 1.66 X (6.150 GHz) and could measure an un-

ambiguous space angle of approximately -+17.5 degrees relative to the boresight of the uplink

ground station signal. For the vernier baseline, the dimension was 97.26 centimeters or 19.95 X

(6.150 GHz) and provided a space angle resolution of approximately 0.0014 degree.

The phase measurement of a received signal from a ground station transmitter was accomplished by

determining the phase difference or the number of wavelengths between the time of arrival of the

incoming wavefront at the reference horn antenna with that at the coarse or vernier horn antenna.

This basic method of phase measurement is illustrated in the diagram of Figure 3-3. The actual

phase determination was much more complicated with the involvement of the three-axis coordinate

system. The interferometer had the capability of simultaneous phase measurement on two frequen-

cies at either baseline that was selected by a switch module with a command signal. A frequency

channel could also be received at either antenna baseline by time sharing. A block diagram of the

spacecraft interferometer system is presented in Figure 3-4. The switch module enabled the calibra-

tion of the receiver frequency dependent phase biases by reversing the two input signals when it was

initiated by a calibrate command signal.

The spacecraft employed a dual-channel receiver where one channel was allocated for the reference

signal and the other channel received either the coarse or vernier comparison signal. A coupler/

switch module provided the time division multiplexing between the coarse and vernier input signals.

Double downconversion was employed by the dual-channel receiver where the first local oscillator

of 6.00 GHz provided a nominal intermediate frequency (i.f.) of 150 megahertz (MHz). A dual local

oscillator at a frequency of 120 MHz was used for the second mixer which had a nominal i.f. of

30 MHz. The two dual local oscillator outputs were offset 2 kilohertz (kHz) by a signal from the

digital converter. The two i.f. output signals were combined and applied to a detector module where

the 2-kHz difference frequency was extracted from the reference and comparison signals. A coherent

relationship existed between the 2-kHz difference frequencies and the reference signal from the

digital converter. For simultaneous reception of two rf signals, a diplexer separated the second i.f.

signal into two center frequencies of 27.5 MHz and 32.5 MHz each of which was processed by its
corresponding i.f. detector module.

The 2-kHz analog signal was digitized and phase compared in a digital phase comparator with the

2-kHz reference signal obtained from the 4-MHz clock frequency in the digital converter. From this

phase information, a phase-count gate was generated that allowed the counting of a number of

clock pulses that were proportional to the phase difference between the 2-kHz signals. These pulses

constituted the electrical phase measurement and were then applied to an averaging counter.

These data formed a part of a 72-bit main word frame that was transmitted every 3 seconds by the

interferometer high speed data link at C-band to the Rosman ground station for processing. The

word frame consisted of 8 bits of interferometer status and 64 bits of phase data where each fre-

quency channel included 32 bits of data. Phase-data format for each frequency channel included 5

bits of coarse phase and 11 bits of vernier phase for both the roll and pitch axis.
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The primary ATS-6 interferometer parameters were

Type of Receiver:

Input Frequency:

Noise Figure:

Vernier Baseline:

Coarse Baseline:

Configuration:

Antenna Gain:

Angle Accuracy (pitch, roll):

Antenna Element:

First I.F./I.F. Bandwidth (BW):

Second I.F./I.F. BW:

Output Frequency/BW:

First Local Oscillator Frequency:

Second Local Oscillator Frequency:

Post-Filter SNR:

Vernier Clock Frequency:

Coarse Clock Frequency:

Counter Input Rate:

Vernier Averaging:

Telemetry Output:

Weight:

Power:

as follows:

Dual-conversion, dual-channel

switched antenna elements

6.150 and 6.155 GHz

15 dB

38.292 in. (19.95 _)

3.191 in. (I .66 _,)

Crossed baselines

+12 dB

0.018 ° (30) over -+12.5 ° angle range

0.025 ° (3o) over -+30° angle range

Compensated horn

150 MHz/15 MHz

(Dual) 32.5 MHz and 27.5 MHz/1 MHz

2 kHz/600 Hz

6.000 GHz

122.5 and 122.502 MHz

+41 dB at +73 dBW ground e.i.r.p.

1024 kHz

1024 kHz

2 kHz

64 samples

Digital 72 bits/3 sec (1 or 2 sta modes)

18.5 lb

15.5 watts

Ground Station Facilities

The two ground stations that provided the two C-band frequency channels were Rosman (North

Carolina) and Mojave (near Barstow, California). At the Rosman station a 26-meter (m) parabolic

antenna and a 4.5-m PLACE/interferometer parabolic antenna were employed. The 26-m antenna

provided an uplink C-band (6.150 GHz) transmission at a peak power of 8 kW and the 4.5-m antenna

provided an uplink peak power of 2 kW. The composite data received by Rosman was processed

to extract the 512-kHz interferometer data. This data was time multiplexed with status settings and

GMT readings that were then recorded on magnetic tape for subsequent analysis.

The Mojave station used the 12-m antenna and provided an uplink C-band peak power of 8 kW.
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A two-frequency interferometer, with orthogonal baselines, established the complete attitude of

ATS-6 by first determining the line-of-sight vectors to the transmitting ground stations. With the

two line-of-sight vectors known, a set of axes relative to a reference were next determined. From

this information the spacecraft attitude was then established.

When the interferometer was used in conjunction with the Earth sensor, which provided a line-of-

sight vector to the center of the Earth, the spacecraft position and its attitude was established. The

spacecraft, the two ground stations, and the center of the Earth formed a tetrahedron that contained

three apex angles at the spacecraft. With the base of the tetrahedron known, the three apex angles

at the spacecraft were measured with the two-frequency interferometer/Earth sensor technique. The

position of the spacecraft relative to a fixed set of axes on the Earth was then established from this

information.

The primary interferometer link parameters for the Rosman ground station were as follows:

Transmitter e.i.r.p.

(frequency-6150 MHz)

Propagation path attenuation

Rainfall absorption

Receiver antenna gain

Receiver signal level

I.f. bandwidth

Receiver noise figure

Signal-to-noise ratio in i.f.

Margin improvement

+73 dBW

-201 dB

-1 dB

12 dB

-84 dBm

1.0 MHz

15 dB

15 dB

+3 dB

RESULTS OF TESTS

Essential tests that were first performed consisted of the two-axis phase measurements for both

frequency channels with unmodulated carriers. In this test the automatic gain control (AGC) signal

levels of the two frequency channels were measured as a function of the e.i.r.p, from each ground

station. The Rosman station used the 26-m antenna at an e.i.r.p, of +81 dBW while the Mojave

station used the 12-m antenna at an e.i.r.p, of +83 dBW. Results of this test are presented in Figure

3-5 where the measured AGC signal level is plotted against the ground station e.i.r.p. Curves in the

graph indicate that a good agreement was obtained at the high e.i.r.p, values with small differences

between 2 and 3 dB occurring at the low signal levels. The measured phase values for both frequency

channels remained essentially constant over the range of signal levels down to the threshold level of

the phase meter. During this test the onboard digital operational control system was maintained in

the low-jitter mode and held the spacecraft three-axis attitude excursions to less than 0.05 degree.

The measured roll and pitch offset phase angles to the Rosman station boresight, for a closed loop

test, were -0.0252 degree and +0.0182 degree respectively for an input-signal level of-96.1 dBm.
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The next set of tests performed consisted of an fm modulated Rosman carrier using narrowband

and wideband signals. For the narrowband test, the ground attitude control command encoder

provided digital data at a rate of 1200 bits per second to modulate the Rosman uplink carder. With

an output power of 2 kW and using the 4.5-m antenna, the received signal level from an unmodu-

lated carrier was -94.4 dBm. The presence of digital data modulation had no effect on the accuracy

of the spacecraft axis phase measurement nor upon the received signal level. In this test the attitude

of the roll and pitch angles were controlled within +0.015 degree with the interferometer system.

The wideband modulation test was performed with the Rosman carder using the 26-m antenna that

provided an uplink received unmodulated signal level of -73.1 dBm. Fm modulation signals that

were used consisted of the Satellite Instructional Television Experiment video and the Health,

Education, Telecommunications Experiment video having peak deviations of 6 MHz and 10 MHz

respectively. Transmission standards that were employed for transmission of the television video

consisted of CCIR type M with a 75/as pre-emphasis/de-emphasis network. Television standard test

patterns and program material were also used in this test. The television signals were relayed back

from the spacecraft to Rosman where it was visually monitored for picture quality. This wideband
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modulation produced fluctuations as high as -9 dBm in the received uplink signal level. With the

interferometer in the closed-loop control mode, the measured attitude of the pitch and roll axis

varied within 0.2 degree when the wide angle modulation was used.

In another test the apex angles were determined from the line-of-sight vectors by using the two-

frequency interferometer and the Earth sensor. These angles were then compared against the

reference angles that were derived from orbit parameters that were established from ranging data.

The angle obtained with the two-frequency interferometer agreed to within 0.01 degree of the refer-

ence while the two angles measured with the Earth sensor indicated a maximum deviation of 0.06

degree from the reference.

The online spacecraft position was also determined by using the two-frequency interferometer and
the Earth sensor. Results of this test indicated that the cross-track and the in-track errors were within

9 kilometers and within a radial error of 2 kilometers for a test period of two minutes. Over an

extended period of time it was estimated that the operational position error for this sensor com-

bination would be limited from 80 to 100 km. If three ground station transmitters were employed,

the position error could potentially be reduced to less than 10 km.

When the uplink transmitter e.i.r.p, of the ground station was above 72 dBW, the phase-angle meas-

urements of the tests performed were virtually noise free down to the quantization limit where the

space angle was approximately 0.0014 degree. The stability in performing the attitude measure-

ments was shown to be 0.002 degree for time periods of 5 minutes and 0.004 degree for periods on

the order of 1 hour.

CONCLUSIONS

The ATS-_ interferometer tests provedthe system to be a precision attitude sensor having a wide
J

field of/view of 35 degrees and providing a space angle resolution of 0.0014 degree. These tests
also demonstrated that the stability of phase measurements was 0.002 degree and 0.004 degree

for time periods of over 5 minutes and 43 minutes respectively. The test results obtained from

online spacecraft position measurements indicated that with the use of three separated ground

station transmitters, a position error of 10 km appeared feasible. With the existing equipment

capability, it was observed that the substitution of a line-of-sight vector derived from the Earth

sensor data in place of one line-of-sight vector proved to be noisy and resulted in excessive posi-

tion errors. To reduce the errors for this combination of sensor data would have required a modi-

fication of the existing interferometer equipment.

The interferometer test results indicated that attitude dependent biases did not require calibration.

However, the frequency dependent biases required frequent calibration to minimize the attitude

and position errors. Phase-measurement errors caused by system noise was not observed for uplink

e.i.r.p, values above 70 dBW.

During the early stages of the test program, one frequency channel (6.155 GHz) of the spacecraft

equipment failed and resulted in only preliminary evaluation of the two-ground station interferom-

eter calibration system for diurnal characteristics. The loss of one frequency channel necessitated

the use of a single frequency channel by time sharing for the two ground stations to perform the
interferometer tests.
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CHAPTER 4

SPACECRAFT PROPULSION SUBSYSTEM

INTRODUCTION

The 16-jet, catalytic hydrazine propulsion subsystem that controlled orbit and attitude motion and

absorbed accumulated momentum for ATS-6 for 5 years, was the forerunner of low-thrust, redun-

dant, multitank systems for three-axis stabilized, communications satellites. At the time of its

qualification, the subsystem was one of the most complex ever developed. Division into two redun-

dant half systems provided a basic subsystem redundancy with attitude control redundancy in all

axes and north-south and east-west stationkeeping. Independent electronic strings for command/

control and telemetry/monitoring, provided an end-to-end overall redundancy of propulsive func-

tions. Systems of similar complexity were subsequently used on the Communications Technology

Satellite, the RCA Satcom, the (Japanese) Broadcast Experiment Satellite, the Global Positioning

Satellite, and the Fleet Communication Satellite. Low-thrust catalytic hydrazine remains the base-

line system for three-axis synchronous and lower attitude missions, providing proven technology in

competition with electrothermally enhanced hydrazine thrusters and the resurgent bipropellant

systems.

The six chapters of this part provide an overview of the ATS-6 propulsion subsystem; its attitude

control, momentum unload and orbit transfer requirements; its fluid-mechanical, electrical, com-

mand/telemetry, and thermal design; and its power, mass, and fuel budgets. The development, quali-

fication, and acceptance tests that validated the design are described. Details are provided of its in-

orbit functional operation, propulsive performance, anomalies, heater and thruster failures, and

alternative control procedures that supported experiment operation following failures. Comparisons

are made between orbital performance and analytically predicted and ground test demonstrated per-

formance. Based on the comparisons, and the analysis of in-flight anomalies and failures, conclusions

are drawn as to necessary design and procedural changes for, and the applicability of, the ATS-6

technology to future satellite and spacecraft programs.

The spacecraft propulsion subsystem was designed and built by Rocket Research Corp., under con-

tract to Fairchild Space and Electronics Company, prime contractor for ATS-6.

FUNCTIONAL REQUIREMENTS

The three-axis stabilized design of ATS-6 required both steady-state and pulse-mode thrusting at a

relatively low level of thrust.

Steady-state thrusting was required for orbit correction, east-west stationkeeping, a proposed one-

month demonstration of north-south stationkeeping, and two-station reposition maneuvers (to the

Indian subcontinent and return).

117
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Pulse-mode operation, using a number of duty cycles, was required for three-axis attitude control,

including an initial and subsequent acquisition of reference attitude, attitude stabilization during

orbit control thrusting, momentum wheel unloading, and jet-only backup to the three momentum

wheels of the attitude control subsystem.

For most of these operations, the spacecraft propulsion subsystem (SPS) was directly controlled by

ground command from the Applications Technology Satellite Operations Control Center (ATSOCC).

Onboard control by the digital or analog controllers in the attitude control subsystem (ACS) was

also used for long-term automatic stabilization during steady-state thrusting, jet-only attitude con-

trol, or during the mixed wheel-jet modes introduced to compensate for a partial wheel failure.

The criteria used in selecting the nominal 0.445-Newton (0.1-pound force) thrust level included:

short pulse performance, repeatability and life, steady-state performance, reasonable burn and

orbital maneuver times, development status, flight experience, and probability of successful schedule

and cost performance. At the time ATS-6 was being specified, catalytic hydrazine thrusters at the

22.24-N (5-1bf), 4.448-N (1-1bf), and 0.445-N (0.1-1bf) thrust levels were available from a number of

suppliers. The 0.445-N thruster produced by Rocket Research Company was selected because it

attained the best score when compared to other designs.

Subsystem and Control Interfaces

The ATS-6 configuration in space with its center-of-mass between the high-gain antenna and the

Earth-viewing module (EVM), and the redundant configuration of the SPS led to a fairly complex

structural interface between the subsystem and the spacecraft. Two orbit control jet bars, each with

a set of yaw and east or west firing thrusters, were mounted at the center-of-mass station on the

antenna support truss legs. These assemblies were plumbed to the two-tank feed system centrally

located in the EVM. Redundant pairs of thrusters mounted on the east/west and north/south sides

of the EVM provided control torques about the roll and pitch axes, respectively.

Figure 4-1 illustrates the location of the orbit control and yaw (or north-south) thrusters in the

plane of the center of mass while Figure 4-2 shows one of the centrally located tanks and the roll
and pitch pairs on the north and west faces of the EVM.

The propulsion feed system and the eight roll and pitch thrusters were closely coupled to the EVM

and did not require heaters or thermal insulation. The orbit control jet thrusters and lines were

thermally iso!ated from the external spacecraft structure, and their temperature was actively con-

trolled with heaters and electronic thermostats. The two figures do not show the multilayer super-

insulation blankets that covered the externally mounted thrusters and propellant lines.

Power for the heaters, latching valves and thruster valves, and pressure and temperature sensors was

supplied directly from the power subsystem using combinations of its solar panels, batteries and
shunt, and charge and boost control elements.

The two remaining subsystem interfaces were with the telemetry and command and the attitude

control subsystems. The former provided a direct path from ATSOCC for manual ground control
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Figure 4-2. SPS Components Internal to EVM 

of propulsion functions while the latter provided the critical interface for onboard control of the 
jets. 

PROPULSION REQUIREMENTS 

Table 4-1 is the propellant budget established by Fairchild Space and Electronics Company to meet 
the attitude and orbit control requirements of ATS-6. 

Orbit correction requirement was based on 30 (sigma) + 10 percent inplane injection errors for the 
Titan launch vehicle. East-west stationkeeping was provided for 1 year each at 94"W and at 35"E 
plus margin. The station relocation budget assumed 40 days for eastward moves and 120 days for 
return westward moves, and 14 feet per second were included for a proposed 1-month north-south 
stationkeeping demonstration. 

The budget assumed an initial 3-axis acquisition from Titan 30 handoff rates of 1 degree per second 
reduced to 0.5 degree per second following deployment (subsequent reacquisitions assumed relatively 
high rates of 0.1 degree per second), stabilization during orbit-control thrusting, and took into 
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account jet misalignment, lateral and vertical center-of-mass shifts, center-of-mass uncertainty, and

mismatch of north-south thruster pairs.

Pitch wheel momentum unload was estimated by taking 5 percent of the peak solar torque and by

assuming a constant gravity gradient corresponding to a 0.1 radian offset of the Z-axis from local

vertical. The roll/yaw momentum unload was based on computer simulations. The orbital coupling

of the roll and yaw axes allowed unload of either axis, but roll unloading was employed because of

the longer moment arm of the roll jets (2.5 times yaw).

Six months of jet-only contingency control were included and cross-coupling effects were accounted

for.

The timeline of the budget, including both orbit and attitude control propellant quantities, is shown

in Table 4-2. Subsequent discussion in Chapter 7 compares the budgeted and actual 5-year con-

sumption.

Table 4-2

Five-Year Propellant Budget Timeline

Item Propellant Weight

(kg) (Ib)

Reference attitude and orbit acquisition

1 year at 94 ° W

40-day move to India

1 year at 35°E

120-day move to 105 ° W*

2½-years at 105 ° W*

Attitude control contingency

Unallocated reserve

Onboard residual

Weight budget

9.6 21.2

2.6 5.8

14.6 32.1

2.1 4.7

5.2 11.4

5.4 12.0

7.9 17.5

1.3 2.8

0.4 0.8

49.1 108.3

*Changed to 140 ° W longitude after launch

Note: Spacecraft total budget includes 0.8 kg of nitrogen pressurant.
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SPS DESIGN DESCRIPTION

GENERAL

The propulsion subsystems for the ATS-6 were designed, built, tested, and qualified by Rocket

Research Company (RRC) of Rockcor, Inc., Redmond, Washington, under contract to Fairchild

and were supplied as integral units for integration into ATS-6.

The subsystem was designed for a 5-year life in orbit and the 49-kg hydrazine propellant load pro-

vided a total impulse of 88,654 Newton seconds (N.s).

The key features of the spacecraft propulsion subsystem can be summarized as follows:

• Integral fluid-mechanical brazed unit

• Two interconnected functionally redundant feed/thruster half systems

• Sixteen 0.445-N (0.1-1bf) catalytic thrusters, isolated in groups of four

• Two titanium tanks with elastomeric positive expulsion diaphragms (blow-down mode)

• A group of seven latching valves that controlled and isolated the propellant feed between

the two positive expulsion tanks and the groups of thrusters

• Redundant heaters on all catalyst beds, truss thruster valves and external propellant lines

• Temperature sensors on the tanks and all catalyst beds, truss valves, and lines; tank pres-

sure sensors and latch-valve position indicators

• Valve actuation and valve/bed heater control by the actuator control electronics units. Line

heater control by the temperature control unit.

SCHEMATIC AND COMPONENTS

Figure 5-l illustrates the fluid interconnection among the tanks (42-centimeter (cm) diameter titan-

ium with EPT-10 diagrams), the fill and drain valves, the 7 latching valves, and the 16 nominal

0.445-N thruster assemblies. Temperature, pressure, and position sensors are indicated. Table 5-1

lists the source and identifying part number of the components.

123
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TRUSS EVM EVM TRUSS
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-,_ PRESSURE SENSOR

Figure 5-1. Spacecraft Propulsion Subsystem Schematic
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Table 5-1

Spacecraft Propulsion Subsystem Components List

Quantity Item Vendor Identification

2 Propellant Tank Pressure Systems
2 Transition Joint Nuclear Metals

7 Latching Valve Carleton Valve

16 Catalytic Reactor Assy. Rocket Research
16 Thruster Valve Parker Valve

16 Fluid Resistor (Viscojet) Lee
4 Fill and Drain Valve Rocket Research

2 Tank Filter M/S Filters (Vacco)

68 Braze Fittings Aeroquip

1 Honeycomb Panel Rocket Research

2 Pressure Transducer Dynascience
14 Thermistor Fenwal Electronic

4 Resistance Thermometers Rosemont Engr.

16 Thermocouple American Standard

32 Catalytic Bed Heater Clayborn Labs

8 Thruster Valve Heater Clayborn Labs

(Dual Redundant)

4 Line Heaters Claybom Labs

PN 80177 (RRC 26331-503)

RRC 25185 (6 AIAV Ti to CRES 347)

PN 2504-0001 (RRC 26328-503)

(Balanced and Relieving Configs.)
RRC 26311-304,305

PN 5700060 (RRC 26334)

EX 43455 (RRC 26371)

RRC 25039-19,-29
RRC 26355-503

AE-506-& AE-517.Series

RRC 26303

Model 1025-0092 (RRC 26324)

K 1589 (RRC 26325)
FI 852C7474-01-020

RRC 26354-502

RRC 26353-502

RRC 26352

FI 862-4110-101

All thruster catalyst beds and the externally mounted thruster valves and lines had redundant

heaters. In addition to the 16 catalyst bed thermocouples and 14 valve and tank thermistor sensors

for telemetry, 4 platinum resistance thermometers were used as redundant sensors for thermal con-

trol of the external lines. The propellant filters were 25 micrometer (/am) absolute and 10 /am

nominal. The lines were 3/16-inch diameter stainless steel, and titanium to stainless transition joints

were used at the tanks.

Figure 5-2 is a close-up view of an internally mounted Earth-viewing module thruster (+/-roll and

pitch), while Figure 5-3 illustrates a truss thruster. The main structural member of the thruster

assembly is an L-shaped bracket. The Parker single-seat valve was bolted to one side of the bracket

with the thruster body on the other side thermally isolated by three thin-walled tube legs between

the bracket and the injector flange. Two bed heaters were bolted and the bed thermocouple was

welded to this flange. A cylindrical heat shield covered the thruster body and its attachments and

was fastened to the bracket by three welded tabs. The heat shield on the EVM thruster was gold

plated while the externally mounted assemblies were black, and their valves incorporated redundant

heaters and a thermistor sensor. Both photographs show a pressure chamber tap used during ground

test that was cut off and welded shut before flight.
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1 

___ - -- . - - - 
Figure 5-2. Roll/Pitch EVM Thruster 

MECHANICAL INTEGRATION 

Figure 5-4 is an isometric view of the subsystem feed assembly mounted on the bottom of the service 
module of the EVM, with the two yaw/orbit control jet assemblies attached to the truss legs. The 
three axes and associated attitude control jets are indicated, and the general orientation in relation 
to the 9.14-meter (m) parabolic reflector and the Earth is seen. Eastward orbital motion was effec- 
ted by jets 7 and 8 and westward motion with jets 15 and 16. The location of the electronics that 
controlled subsystem functions, the actuator control electronics (ACE) and temperature (control) 
and signal (conditioning) unit (TSU), is also shown. The feed assembly was bolted to the bottom 
X-frame of the service module. The pitch and roll jets were bolted and pinned to the edge frame and 
the orbit control jet bars were held with clevis fittings to the graphite reinforced plastic truss legs. 
The thermal wrap assembly, covering the two orbit-control jet propellant manifolds and the transfer 
tubes, is not seen in the figure, but is described in the following paragraphs. 
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~~ ~ 

Figure 5-3. Truss Thruster 
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Figure 5-4. Spacecraft Propulsion Subsystem 

The integral nature of the subsystem is illustrated by the way it was shipped from Rocket Research 
to Fairchild. The integrated subsystem in its support frame is shown in Figure 5-5. 

The complex process of installing the subsystem in the spacecraft involved lowering the middle sec- 
tion (service module) of the Earth-viewing module onto the subsystem in its support fixture. 

Temporary aluminum legs on the service module supported the orbit-control jet assemblies for sub- 
sequent transfer to the reflector support truss legs on the spacecraft. Final bolt-down of the feed 
assembly is seen in Figure 5-6. Following temporary support of the orbit control jet assemblies and 
various harness elements, the service module and attached propulsion subsystem was lifted out of 
the support fixture. The service module with the attached subsystem was subsequently iiitegrated 
with the communications and experiments modules to form the Earth-viewing module. 
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1 

Figure 5-5. SPS Support/lntegration Frame 
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Figure 5-6. Mechanical Integration of SPS and Service Module 
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ELECTRICAL INTERFACE

The basic electrical block diagram of the spacecraft propulsion subsystem is shown in Figure 5-7.

Groups of power input and telemetry output functions are shown connected to subsystem com-

ponents. As previously indicated, part of the function of the TSU was to regulate the line heaters

and process line temperature, heater, and jet-on status.

The ACE controlled the three momentum wheels and the remaining propulsion subsystem functions

including jet activation, latch-valve position, and bed and valve heater activation. In addition, bed,

valve, and tank temperatures; tank pressure and power; and latch-valve status data were processed

by it for telemetry transmission to the ground.

INPUT POWER LINES

THRUSTER VALVES

LATCHING VALVES

HEATERS

m

i
I i .A-_c...oI =..c_c_,A_T,..o..,_.S.ON
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l POWER I _ SIGNALS

I _ / " ,VALVE/HEATER/ _--I /
I _ TRANSDUCER POWER I
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:- I (is)
I _ TRANSDUCER SIGNALS I
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i
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HARNESS

Figure _.7 _ ....... _, a,,,p,,,=;,,- ¢,,_yc,°m p==,.,,;,.ot _al_ock Diagram
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CONTROL AND MONITORING FUNCTIONS

The set of 68 commands and 93 telemetry channels are summarized in Table 5-2. The control func-

tions were divided into two identical groups (SPS-I, SPS-2). Both groups could be commanded to

function simultaneously, but, in most cases, the same function (e.g., jet actuation) could not be

caused to operate simultaneously in both groups. For example, the jets from the group last powered

on were in control at any time, while the heaters and the EVM latch valves and truss latch valves were

powered only when their particular group was activated. The tank and interconnecting latch valves

and telemetry were powered when either group was activated. The jet controls were more complex,

using latching drive circuits for orbit maneuvers and logic circuits to prevent opposed jet fn'ings or

to set up mixed modes where a particular jet in one group could be selected to replace a failed jet
in the other.

Telemetry monitoring consisted of 32 analog temperature and pressure measurements; 37 discrete

indications of power, valve position, and jet actuation status; and 24 derived discrete indications of

command status. The analog signals were 0 to 5 volts direct current (Vdc) with 9-bit resolution and

the discretes were 0 or 5 Vdc.

Figure 5-8 shows the location of the telemetered temperature and pressure sensors.

THERMAL DESIGN

Redundant heaters provided thermal control for all catalyst beds, for the external thruster valves, and

for the external propellant lines. A particularly critical aspect was the thermal design of the external

lines. The center-of-mass of the spacecraft was located between the Earth-viewing module and the

reflector. This condition fixed the mounting of the orbit control and yaw jets external to the

thermally-controlled Earth-viewing module in the plane of the center-of-mass.

The transfer tubes and the orbit-control jet manifold were exposed to a complex and varying pat-

tern of Sun and shadow along their length as the Sun circled the spacecraft, and at the same time

experienced a variable thermal interface with the orbit-control jet bar and truss legs.

The solution to the problem of maintaining the lines above freezing and below about 100°C under

these conditions was a thermal wrap assembly containing heaters that could be automatically con-

trolled at a low (about 2-watt) or high (about 8-watt) level by thermostatic circuits in the tempera-

ture control and signal conditioning unit. A backup manual ground-control mode was incorporated

(constant on or off).

The wrap consisted of a layer of copper wires, parallel to the 4.8-miUimeter (mm) lines, held by

metallic straps; spiral wrapped tape heaters; an electromagnetic-radio frequency interference tape

shield; a multilayer aluminized Mylar superinsulation blanket; and an outer cover of black painted

Kapton. Control and telemetry sensor leads were routed inside the tape shield. The wrapped lines

were supported on the legs and on the orbit-control jet bars with fiberglass thermal standoffs.
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Table5-2
Command/TelemetrySummary

Commands Telemetry

Power

!

SPS-1 t SPS-2

ON I ON
I

OFF , OFF

LV OPEN_
CLOSE) (1) (2) (3)

ON )

Valve Htr. OFF _ PR

ON )
BedHtr. OFF_ PR

Line Htr. ON (Hi))

Man to Auto I PR

(4) (5) (6) (7)

BU PR

BU PR

BU PR

BU

BU

BU

32 Analo_ Channels

16 Bed Temp - 30 ° to 980°C

8 Valve Temp .20Oto 150o C
4 Line Temp

2 Tank Temp - 20*to 70°C

2 Tank Press - 0 to 500 psi

37 Discretes

2 SPS Power

7 Latch Valve Position

2 Ground Control Jets

12 AC Jet Actuation

12 Line Heater Status

2 E/W Jet Actuation

OFF (to Man)

Ground Control:

Jet Enable
Wheels Enable /Disable

Jets Only: +R -R +P -P +Y -Y

Mixed Mode: +-R -+P +Y

Orbit Control:

-+R +P +-Y

24 Derived Discretes

2 SPS Power Status

4 Bed Heater Status

4 Valve Heater Status

6 Mixed Mode Select

6 Mixed Mode

1 + R/P/Y Jet

1 - R/P/Y Jet

I

WPr, WBu, StopW, EPr, EBu, StopE, N,S

Figure 5-9 shows the thermal wrap partially applied to a high-fidelity thermal test model of the

orbit control jet assembly.

Figure 5-10 illustrates the implementation of the high/low and automatic/manual control of both

the prime and backup line heaters. Combinations of high, low, and off conditions of the prime and

backup circuits provided five steps of steady-state heater power; 2, 4, 7½, 9½, and 15 watts. Opera-

ting with various combinations of manual (either or both heaters steady-state) and automatic (either

or both cycling on and off), various values of average power could be obtained.

In-orbit experience with line thermal control indicated that the line thermal control was overly

complex.
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A, It

_TANK THERMISTOR (2)

A BED THERMOCOUPLE (16)

O VALVE THERMISTOR (8)

O GASSIDE THERMISTOR (GROUND
ONLY)

D TANK PRESSURE (2)

¢ THERMOSTAT SENSORS (4)

• LINE THERMISTOR (4)

Figure 5-8. SPS Sensor Locations
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T 

Figure 5-9. 01-it-Contrc Jet Therma Test IOLJI (Parti: Wrap) I 
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SUBSYSTEM WEIGHT AND POWER

Table 5-3 summarizes subsystem weight and component power requirements.

The subsystem dry weight was 43 percent of total wet weight with a complementary propellant/

pressurant mass fraction of 0.57. It should also be noted that the weight (actual and allocated) of

the truss line thermal control elements was 28 percent of the dry weight; a result of the particular

ATS-6 design with externally mounted orbit control thrusters.

The nominal steady-state power with all components operational was:

SPS-1 and -2, valve heaters = 8 X 2.5 =

SPS-1 and -2, prime and backup line

heaters (low automatic) = 4 X 2.3 =

Sensors (2 pressure + 34 temperature) =

Total =

20.0 watts

9.2

0.6

29.8 watts

Duty cycling of the line heaters resulted in an average power something less than that shown.

During jet firing periods, there was an additional bed heater load of 8 X 1.5 = 12 watts and an

intermittent 3 watts for thruster valves. Details of heater operation with failures is discussed later.

BLOWDOWN OPERATION AND THRUSTER PERFORMANCE

The subsystem operated in a blowdown mode over a tank pressure ratio of 2.8 to 1 (Figure 5-11).

The curves were derived with temperature as a parameter, based on the actual flight propellant load.

The two types of ATS-6 0.445-N (0.1-1bf) thrusters were seen in Figures 5-2 and 5-3. Three points

from the nominal steady-state performance curves over the blowdown range at a feed temperature
of 21°C were as follows:

Pt, Tank Pc, Chamber

Pressure Pressure F, Thrust

(psia)* (psia) (N) (lbf)

375 240 0.56 0.125

285 192 0.44 0.100

134 103 0.24 0.053

Isp , Specific
Impulse

(s) (N-s)/kg

223 2187

220 2158

214 2099

*psia-pounds per square inch absolute
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Table 5-3

SPS Weight and Power Summary

Component Weight, kg (lb) Power, Watts

Propellant Tanks

Tank Brackets

Latching Valves

Thruster Assembly

Fill and Drain Valves

8 (truss)

8 (EVM)

Tank Filters

Pressure Transducer

Temperature Sensors

Honeycomb Panel

Lines and Fittings

Brackets and Fasteners

Electrical Harness

Delivered Subsystem

Truss Line Thermal Control (Fairchild)

OCJ bars = 4.96 (10.93)

Truss legs = 3.99 (8.80)

TCU (allotment) = 1.68 (3.70)

Dry Weight

Hydrazine Propellant (Nom Budget)

Nitrogen Pressurant

Wet Weight

2 × 4.06 = 8.12 (17.90)

2 × 0.85 = 1.70 (3.76)

7 X 0.27 = 1.89 (4.20) 46 (0.028 s)

X 0.30 = 2.40 (5.28) 3.0 (thruster valve)

X 0.29 = 2.32 (5.12) 1.5 (bed heater)

4 × 0.10 = 0.40 (0.88) 2.5 (valve heater,

truss only)

2×0.05 = 0.10(0.23)

2 × 0.08 = 0.16 (0.35) 0.30

= 0.11 (0.25) 0.043 (thermistors)

= 3.73 (8.22) Externalline heaters

= 1.37 (3.01) Auto Manual

High 8.2 9.5

Low 2.3 2.7

= 1.28 (2.83)

= 3.34 (7.37)

= 26.94 (59.40)

= 10.43(23.00)

= 37.38 (82.4)

= 49.08 (108.2)

= 0.81 (1.8)

= 87.27 (192.4)
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Figure 5-11. Blowdown Curve
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The extremes of the nominal performance envelope at high and low combinations of feed tempera-

ture and pressure were:

High Low

Tank pressure, Pt 395 psia 125 psia

Feed temperature, Tf 35°C 5°C

Chamber pressure, Pc 250 psia 96 psia

Thrust, F 0.59 N (0.132 lbf) 0.22 N (0.050 lbf)

Specific impulse, Isp 2197 N-..__s(224 s) 2040 __N's (208 s)
kg kg

Each thruster was tested at high and low feed pressure before and after the acceptance vibration test

using a set of baseline performance duty cycles consisting of 5 pulses (0.1 second on, 200 seconds

off [0.1/200] ), 25 pulses (0.2 second on, 10 seconds off [0.2/10] ), and a single run of 200 seconds.

The steady-state acceptance data for the east-west thrusters are listed in Table 5-4 with the thrust

data plotted in Figure 5-12. The small scatter of the data are well within that specified over the

blowdown range. The maximum thruster-to-thruster variation in specific impulse at steady-state was

---2.8 percent at high thrust and +5.6 percent at low thrust. Also, there was a 2 to 4 second increase

in performance following acceptance vibration. The thrusters reached 90 percent of steady-state

specific impulse in about 40 seconds. The maximum thrust uncertainty at any given tank pressure

over the blowdown range was less than +5 percent.

The 0.2/10 automatic momentum wheel unload duty cycle showed, on the average, a 20 percent

increase in specific impulse during the first 25 pulses at high thrust and a similar 10 percent increase

at low thrust. It also displayed a variable increase following the acceptance vibration test. The

average thruster-to-thruster specific impulse uncertainty was fairly constant at about -+8 seconds,

which translates to about -+7 percent for a first low-thrust pulse and about -+5 percent for the 25th

high-thrust pulse. Figures 5-13 and 5-14 illustrate performance data for the SPS-1 No. 2 roll control

thruster under a variety of conditions.

The minimum on-board pulse width during computer initiated jet-only attitude control was 0.100

second, while the normal ground commanded pulse width was 0.250 second. The 0.1/200 ground-

test data indicated a total range of bit impulse for the first five pulses between 0.039 and 0.060 N.s

at 0.49 N and between 0.022 and 0.040 N.s at 0.22 N. For any given pulse the maximum bit uncer-

tainty at high thrust was -+20 percent and at low thrust was +23 percent.

For short pulses at or below 0.1 second duration, specific impulse for the first pulse or for pulse

trains at low-duty cycles was almost exclusively a function of bed temperature. For ATS-6 type
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Table5-4
East-WestThrusterPerformance

Value
Parameter (Pre-andPost-VibrationTest)

No. 7

Thrust: - High
(lbf) - Low

Specific
Impulse - High
(s) - Low

Thrust - High

(lbf) - Low

Specific

Impulse - High

(s) - Low

Thrust - High

(lbf) -- Low

Specific

Impulse - High

(s) - Low

Thrust - High

(lbf) - Low

Specific

Impulse - High

(s) - Low

Pre- Post-

0.1268 0.1259

0.0558 0.0563

228.2 226.9

214.1 210.5

No. 8

0.1243 0.1235

0.0567 0.0548

220.1 215.7

221.5 206.8

No. 15

0.1220 0.1255

0.0550 0.0544

221.2 228.3

221.0 214.0

No. 16

0.1240 0.1246

0.0540 0.0533

217.5 216.2

209.2 198.3

Note: Thrust (lbf) X 4.448 = Thrust (N)

I p (s) X 9.807 = Isp (N.s)/Kg
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0.445-N thrusters, the average specific impulse for pulses having durations between 0.020 and 0.100
second was:

Tb, Bed Isp , Specific
Temperature Impulse

(°C) (°F) (N-s)/kg (s)

93 200 1128 115

204 , 400 1226 125

316 600 1344 137

538 1999 1667 170

In-orbit performance is discussed in Chapter 7.

PROPULSION GROUND SUPPORT EQUIPMENT

The sets of test and service equipment used at Rocket Research during assembly and subsystem level

testing, and at Fairchild during subsystem integration and spacecraft level testing included mechan-

ical, electrical, and fluid equipment.

The central piece of mechanical ground support equipment was the fixture shown in Figures 5-5

and 5-6. This complex multiple-use fixture was used for component and subassembly support during

initial subsystem assembly and brazing, support during checkout and environmental qualification

and acceptance tests, crosscountry shipment, thermal control assembly installation at Fairchild, and

subsystem integration in the spacecraft.

Electrical checkout and functional operation of the subsystem at Rocket Research was accomplished

using an electrical test set and pressurization panel. All functional circuits of the subsystem in-

cluding thruster valves, latch valves, heaters, and the pressure and temperature sensors could be

checked individually with the test set. The pressurization panel regulated the flow of helium or

nitrogen gas to the subsystem for proof, thruster flow, and leak tests.

Hydrazine propellant, water (as a flush fluid for the propellant or as a refree fluid for vibration

testing) and isopropyl alcohol (a flush fluid for the water) were loaded into or unloaded from the

subsystem tanks using a service cart designed and fabricated by the Ford Aerospace Company (then

Philco-Ford). Figure 5-15 shows the control panel of the cart. The 2,361 kg (3,000 lb) cart incor-

porated a full set of hand operated pneumatic control valves; pressure gages; pressure regulators; a

self-contained, high-pressure gas supply; a digital-readout tank weight transducer; a vacuum pump;

and necessary interconnecting tube manifolds and high capacity micron filters. Figure 5-16 is a

fluid schematic of the cart. Experience with the cart at Rocket Research, Fairchild, and at the Cape

Kennedy launch site, where the spacecraft propulsion subsystem was filled with hydrazine on the

tenth level of the Launch Complex 40 service tower, indicated that it was overly complex, large,
heavy, and cumbersome to move and manipulate.
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Figure 5-15. Service Cart, Front 
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Due to schedule constraints, an additional pressure test console was fabricated at Fairchild for use 
during thruster and valve leak tests at the spacecraft level. Figure 5-17 shows a specialized piece of 
mechanical ground support equipment, two of which were required to support the orbit-control 
jet assemblies on either side of the Earth-viewing module during transfer from the temporary sup- 
port legs (Figure 5-6) to the reflector support truss legs during spacecraft assembly and integration. 

In addition to the above items and laboratory multimeters, the spacecraft propulsion subsystem re- 
quired a number of other ground support items including (1) a dew point indicator (Alnor Dew- 
pointer) to determine moisture content of the gases inside the subsystem, (2) a set of low-flow gas 
rotometers for steady-state flow at low tank pressure (as indicative of clear thruster cap tube and 
catalyst bed passages and for indicating thruster operation during ambient or vacuum testing), and 
(3) a set of liquid pipettes to measure valve internal leakage by observing movement of a small water 
plug in the pipettes. Miscellaneous custom-made wrenches, fluid adapters, interconnect hose sets, 
and electrical components completed the subsystem ground support equipment. 

Figure 5-17. Orbit Control Jet Bar Support Fixture 
i Fa irchiid j 
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CHAPTER 6

SPS DESIGN VALIDATION

OVERVIEW

Flight readiness of the ATS-6 propulsion subsystem was assured by a detailed and comprehensive

ground test program that involved all subsystem components, an engineering model, a prototype for

subsystem and spacecraft level qualification (the latter based on tests of the prototype installed in

the thermal structural model of the spacecraft), thermal and structural models of the critical exter-

nal thrusters and their manifold, a number of siaecial assemblies and mockups to confirm various

design areas, and the flight units during their acceptance tests.

Supporting the test program was a comprehensive set of documentation, a number of analytical

studies, and a set of certified ground support equipment.

The extent of this effort is outlined in Table 6-1 that includes items discussed in the following

paragraphs. To provide some perspective of the time span of the development test program, Table 6-2

lists the dates for a number of significant events from subsystem assembly through the ATS-6

launch. The contract to Rocket Research Company was let early in 1971.

SPECIFICATIONS, PROCEDURES AND PROCESSES

The basic requirements specification from Goddard Space Flight Center (862-1100)was translated

by Fairchild into a procurement specification (862-PR1100) and placed with Rocket Research. The

subcontractor in turn generated a set of component procurement specifications, design drawings,

manufacturing and materials processes, assembly/integration procedures, and test procedures. All

operations were under quality surveillance and control, including comprehensive documentation,

through delivery of the subsystem to Fairchild.

At the spacecraft level, Fairchild generated a complete set of procedures covering the subsystem

from receiving inspection at Germantown through launch at Kennedy Space Center, and drawings

and material processes for the orbit-control jet thermal control assembly. The following list illus-

trates the comprehensive nature of the procedures, all of which were under quality-assurance

control.

Number* Title

862-PS-3010

862-PS-3011

862-PS-3012

SPS receiving inspection

SPS propellant line thermal wrap assembly

SPS installation in service module

149
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Table 6-2

Propulsion Subsystem Assembly/Test Dates

Prototype ATS-F ATS-G (Spare)

(SN 1001) (SN 1003) (SN 1002)

Begin Assembly at RRC

Subsystem Integration Complete

First Hydrazine Load

Qualification/Acceptance Complete

Receiving Inspection at Fairchild

SPS/SM Integration

Launch

Nov 1971 Apr 1972 Feb 1972

Mar 1972 Aug 1972 July 1972

Apr 1972 Sept 1972 Oct 1972

May 1972 Sept 1972 Oct 1972

Feb 1973 Apr 1973 Oct 1973

Apr 1973 June 1973 NA

NA May 30, 1974 NA

(ATS-6)

Number* (cont)

862-PS-3016

862-TP-1139

86_CP-1001

86_CP-1002

862-CP-1003

862-CP-1004

86_CP-1005

862-TP-1110

862-TP-1111

862-TP-1112

862-TP-1155

862-CK-1044

86_CK-1051

862-CK-1072

862-CK-1073

Title (cont)

Special operations, SPS components removal from the TSM

SPS-response test set - ATS-F BTE

SPS - mechanical AGE (service cart), certification/calibration procedure for

gas use

SPS - Electrical BTE (propulsion system test sets)

Certification of SPS pressure test console

Validation of spacecraft propulsion subsystem service cart at Fairchild after

Cape Kennedy operations

SPS nonmetallic, low-pressure pressurization manifold assembly and proof test

SPS leak and electrical tests test procedure

TSM SPS pre/post-vibration test operations

Procedure for pressurization of SPS to support spacecraft tests

SPS latch valve, thruster valve, leak test and flow verification

Leak check of SPS at Launch Complex 40 (also for post-vibration and preship

test)

Prelaunch loading of SPS with hydrazine and pressurization to flight pressure

with gaseous nitrogen

Inspection and validation of spacecraft propulsion subsystem service cart and

hose sets at Cape Kennedy

Hydrazine cart servicing at Cape Fuel Storage Area #1
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Number* (cont) Title (cont)

862-CK-1074

862-CK-1075

862-CK- 1076

862-CK-1078

862-CK-1094

Hydrazine sample and analysis at Fuel Storage Area #1

Transport loaded hydrazine cart from Cape Fuel Storage Area 1 to Launch

Site Complex 40, Level 10 of MST

Receiving inspection and validation of SPS pressure test console, pressure hose

set, and electrical bench test equipment

SPS hydrazine service cart decontamination

SPS spacecraft off-loading procedure

*Note: PS = Process Specification

CP = Certification Procedure

TP = Test Procedure

CK = Cape Kennedy (Procedure)

In addition, there were many procedures generated for specific operations such as "Procedure for

Repair of Open Circuit in Thruster Valve Position 13 (S/N 121) on FI-SPS" (862-PS-3017). Essen-

tiaUy all planned or unplanned work on the propulsion subsystem during spacecraft test flow was

documented with written procedures.

ANALYTICAL BASELINE

Study reports, test data analyses, laboratory investigations, and recommendation memos formed the

analytical documents that supported implementation of the propulsion subsystem design. They can

be grouped in five areas: reliability, performance, structural design, thermal sizing, and electrical
interconnection.

Considerable effort was expended in determining component arrangement to provide a functionally
redundant subsystem. All orbit and attitude control thrusters and thermal control circuits had back-

up elements, with all elements commanded by independent circuits. While each of the two tanks

contained only one-half of the mission budget (with margin), either could be isolated in case of

failure, allowing the mission to continue with reduced capability.

Operation and performance of the thrusters and of the integrated feed/thruster subsystem was

analyzed in detail to ensure compatible operation of the 0.445-N thrusters with the blowdown feed

system. The analytically determined duty cycles (derived from planned spacecraft maneuvers) along

with postulated thermal and vibration conditions were then used in specifying the qualification and

acceptance test programs. The dynamics of filling evacuated manifolds was investigated to ensure

the existence of benign water-hammer effects.

Detailed structural analyses were made of all critical mechanical elements including the thruster-

valve assembly, tank-mounting tabs, the feed-components support plate, the orbit control thruster-

manifold-support bar assembly, and the subsystem spacecraft attachment interface.
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Considerable effort was expended on thermal analyses including the thruster assemblies for steady-

state, pulsing, and soak back conditions; the thrusters mounted on the Earth-viewing module to

ensure they did not require heaters; and the complex Sun-shadow environment of the externally

mounted orbit control thrusters. The latter analyses formed the basis for the complex orbit-control

jet thermal control assembly that included copper conductor wires around the propellant lines, full

length line heaters, multiple temperature sensors, and superinsulation blankets. The level of detail

of the thermal studies included, for example, temperature prof'des along the thruster capillary feed

tube under pulsing and steady-state conditions. These temperature profiles would identify flow con-

ditions possibly leading to pulse decay.

The original design had pairs of opposed orbit-control jet thrusters on each side of the spacecraft,

with the inward facing thrusters of each pair exhausting over the antenna farm on top of the Earth-

viewing module. Questions of heating of antenna elements and of plume forces generated on the

reflector mesh by the outward facing thrusters were raised and a subcontracted plume analysis was

let to Lockheed Missile and Space Company at their Huntsville, Alabama, operation. The sizable

distances between the east-west thrusters, the antenna, and the reflector produced insignificant

analyzed levels of heating and force moments during thruster operation. However, distrust of such

analyses led to a decision to turn the inward facing thrusters 180 degrees, which produced the final

east and west parallel sets on each side of the spacecraft. This arrangement had less than full redun-

dancy, and when subsequent orbital operations required both eastward and westward maneuvering

with a single half-system, the spacecraft had to be yawed 180 degrees to accomplish thrusting in

either one or the other of the two directions.

The electronic circuits controlling and monitoring propulsion system functions were analyzed by

Honeywell as part of their attitude control subsystem subcontract. They also reanalyzed particular

control circuits following the heater failures discussed in Chapter 8. A qualitative analysis of har-

ness interconnect requirements resulted in an electrical interface control drawing subsequently used

as a functional and wiring checklist.

DEVELOPMENT TESTING

Development tests that confirmed the design and investigating problem areas will be outlined in

four groups: components, the engineering model, orbit-control jet assemblies, and special tests.

A number of components, some of which were used in the engineering model, were subjected to

life/cycle tests to establish confidence that the subsystem would successfully complete qualification.

The following are abbreviated summaries of these tests.

A titanium propellant tank containing an EPT-10 elastomeric diaphragm was pressure cycled

between 4.4 psi and 385 psi 2025 times at a rate of 90 cycles per hour. External leakage was zero

before and after the test, while internal leakage (across the diaphragm) decreased from 4.0 to 3.5

standard cubic centimeters per hour (scc/hr) of gaseous nitrogen.

A latching isolation valve was "dry" cycled open and closed 100,223 times at 10 cycles per second

(cps) while pressurized with nitrogen at 21.09 kg/cm 2 (300 psi). The internal leakage across the seat

decreased from 0.06 to zero scc/hr (of helium).
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A thrust chamber valve was tested at the vendor's facility through one million cycles with a resultant

increase in leak rate from 0.0 to 0.16 scc/hr helium. The specified leak rate was 1.6 scc/hr.

A catalyst bed heater was energized for 68 hours at 454°C and for 31 hours at 650°C. Post-test

inspection revealed no change in resistance, cracking, or deterioration of wire.

A number of thruster assemblies, some rebuilt, were hot fired at Rocket Research under a variety of

inlet and ambient conditions. Initial testing on thruster assembly serial number (SN) 005 accum-

ulated 57.2 hours of steady-state firing and 30,000 pulses over a propellant temperature range from

4"C to 71"C. Thruster assembly SN 001A, used to determine the nozzle thrust characteristics,

accumulated 50 hours of steady-state firing. SN 002C provided further thrust data and accumulated

70,000 warm (bed heater activated) starts at various duty cycles and 30,000 pulses at 1 cps. SN

003A was subjected to 20,000 pulses at 4°C and confirmed the cold start capability of the thruster.

Figure 6-1 shows SN 042 during abbreviated tests at Goddard Space Flight Center to provide addi-

tional confirmation of steady-state and pulse performance.

The engineering model, a half subsystem consisting of a single-feed tank and eight thrusters with a

layout, valve arrangement, and manifold like the flight design, was put through a full mission pre-

qualification test. The eight thrusters were given performance baseline firings and the tank/feed con-

trol subassembly was given a qualification-level vibration test before integration into the model. The

vibration test revealed several weak brackets supporting the pressure transducer and fill and drain

valves that required modification.

The engineering model test consumed 49 kilograms (kg) of hydrazine for a total impulse of

94,058 N.s. An orbit control thruster (No. 7) ran 24 hours steady-state and it and its backup (No. 8)

were subjected to 500 pulses (90 seconds on, 300 seconds off) to demonstrate short burn capability.

The attitude control thrusters accumulated in excess of 37,500 pulses, and in all cases the thrusters

were within specification performance and showed no increase in chamber pressure roughness.

The test sequence was as follows:

• Proof, leak, and electrical check

• Performance baseline

• Coldsoak at-10°C

• 24-hour thermal vacuum soak/firing at +5°C

• Thermal vacuum at +50°C

• Performance mapping

• Mission simulations

• Leak and electrical check.
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Figure 6-1. SN 042 Thruster Assembly Test a t  Goddard Space Flight Center 
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The problems that surfaced during the engineering model test were either minor or were investigated

through analysis or by further development tests.

A critical area was design of the externally mounted orbit-control jet assemblies. Two high-fidelity

models were fabricated to prove thermal control and structural capability. Figure 5-9, Chapter 5,

shows another view of the thermal model partially assembled with its four thrusters and insulated

feed manifold. Figure 6-2 shows an orbit-control jet bar configuration mounted for vibration testing,

illustrating the fiberglass standoffs supporting the wrapped manifold. Test results, indicating that

the bar was too flexible, led to a redesign incorporating damping strips ("Rigidamp") on all four

sides of the square bar. Subsequent model and spacecraft level tests of the design indicated good

margin.

The thermal model is shown being prepared for test at Fairchild in Figure 6-3 (with a thermal

louver). The same model was also tested at Goddard Space Flight Center under solar simulated con-

ditions including: equilibrium hot and cold, transients with heaters on and off, and control using all

temperature control unit command combinations. Additional vacuum testing confirmed adequate

venting area in the superinsulation blankets.

Further ambient testing of the orbit-control jet thermal model and a single thruster/valve assembly

(SN 042) at National Science Laboratories investigated the three areas of electromagnetic inter-

ference (EMI) and radio frequency interference (RFI). They were:

1. Rf field susceptibility (valves, leads and drives)

2. Conducted susceptibility (spikes and coupled audio)

3. Conducted emissions (valve transients).

Both the orbit-control jet thermal model and the thruster assembly were somewhat out of specifica-

tion during several of these tests, suggesting that additional shielding wrap-around should be applied

to the thermal control assembly. This was accomplished but, as discussed in Chapter 8, the bed

temperature circuits remained susceptible to the rf fields generated by the communications sub-

system. No effects due to spikes, coupled audio, or valve transients were noted during the mission.

A number of tests, grouped for convenience here as special tests, investigated a number of problems

associated with the thruster assembly and the interconnect line between the feed assembly in the

Earth-viewing module and the orbit-control jet thrusters.

Previous experience with tenth-pound thrusters launched with their nozzles up (i.e., in the launch

direction) contained instances where catalyst fines had worked their way into and plugged capillary-

size feed tubes. While none of the ATS-6 thrusters was so oriented, one of the development thrusters

was vibrated under qualification level conditions to ensure that no such problem existed with the

ATS thrusters. Pre- and post-vibration hot firing of the vibrated thruster produced the same per-
formance.
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Hydrazine, unlike water, contracts when it freezes and on remelting can produce large pressures if

constrained by unmelted material. The orbit-control jet thrusters were of particular concern in this

regard because of their exposed location. A thruster/valve assembly was filled with hydrazine and

put through a number of freeze-thaw cycles, without actuating the valve, so that the hydrazine

progressively froze and thawed from the valve (seat) end of the test setup toward the feed tube.

Results indicated that the valve was unharmed after three cycles, but that the circumferential weld

holding the armature/seat section to the midsolanoid section cracked between 3 and 9 cycles indi-

cating that a valve heater failure in the orbit-control jet thrusters could lead to a major leak path.

A heater failure, with freezing but without leaking, is described in Chapter 8 that addresses in-orbit
anomalies.

The active element of the valve thermistor was embedded in multiple layers of epoxy and other

plastics inside a steel body that was threaded for insertion in the valve body. There was some con-

cern that differential expansion and contraction of the layers and shell could lead to failure of the

sensing element. Thermal cycling of three thermistors between -96°C and 99°C for 100 cycles

showed no change in thermoelectrical properties.

The thruster plume analyses discussed in Chapter 6 treated heating and force effects but not con-

tamination from the thrusters. This latter effect is not usually important with hydrazine thrusters,

except in the case of extremely cold surfaces found in proximity to the jets such as the Earth-

viewing module north wall components and the roll jets. A high-fidelity mock-up was planned for

test at the Lewis Research Center, including a quartz-crystal microbalance (QCM), the radiometer

cooler, a Polaris sensor assembly, thermal louvers, and a number of surface material samples. How-

ever, problems with obtaining spare units, with the schedule, and the general complexity of the test

setup led to a simplified and abbreviated test of a thruster with an array of QCM's as detectors. The

data were somewhat variable but indicated an acceptable low level of back flow from the thruster

and a good probability of no interference with cold surfaces on the north wall.

The last special test verified that the S bends, incorporated in the lines connecting the Earth-viewing

module feed assembly with orbit-control jet thruster/manifold assemblies, could be straightened and

rebent should any adjustment of the orbit-control jet assembly position be necessary to accom-

modate a shift in the center-of-mass of the spacecraft. A replica of the S-bend portion of the line

was straightened (slight remaining curvature) and rebent three times, vibrated, and checked for any

particuiate contamination developed during the bending operation. No significant particulates were

found and a pressure test at 1034 atm produced no deformation.

PROTOTYPE QUALIFICATION

The major effort in verifying acceptability of the spacecraft propulsion subsystem design for the

ATS-6 was the qualification test of the prototype model at Rocket Research Company and its

subsequent incorporation in the thermal structural model spacecraft and further thermal, vibration

and launch-site compatibility testing.

The starting point for subsystem design was the selection of components with the required perform-

ance characteristics and a history of flight and/or development experience. Table 6-3 lists the pro-

nllkinn earnnnnt_nf_ the.lr _nnreP, nnd an "lndio_finn cs4 _ nf_,'cr'in,,o ,,¢,,_,'_, n._ o,,,,+_--_ ,4 .... I_A I_,,
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Table 6-3

Component Source and History

Component Vendor History

Propellant Tank (2)

Latching Valve (7)

(Filter)

Thruster Valve (16)

(Filter)

Fill and Drain Valve (4)

Tank Filter (2)

Pressure Transducer (2)

Thermistor (14)

Thermocouple (16)

Thruster Heater (32)

Valve Heater (8)

(prime + backup)

Pressure Systems, Inc.

Carleton Valve Co.

Parker Valve Co.

Rocket Research Co.

Vacco Industries

Dynascience

Fenwall

American Std.

Clayborn

Clayborn

Pioneer, HPM and ERTS

Intelsat IV

HPM (dual config.)

HPM, ERTS, Ranger

HPM and ERTS

Apollo LEM, HPM and ERTS

REM Mono

REM Mono

HPM and ERTS

HPM and ERTS

Legend: HPM - Hydrazine Propulsion Module

ERTS - Earth Resources Technology Satellite

REM Mono - Classified Satellite

The qualification program at Rocket Research required several months of effort and consisted of

component, subassembly, and subsystem testing under qualification-level thermal and vibration

environments for duty cycles and propellant throughputs beyond those required for the mission.

In addition, a thruster was subjected to a vibration test beyond the qualification levels because of

uncertainties in the actual levels at the center of the orbit-control jet bar where the east-west

thrusters were located. Strain-gage measurements during this severe test (2.3 inches double ampli-

tude to 17 hertz (Hz) and 34 g's maintained to 25 Hz) indicated adequate margin existed in the

design. Pre- and post-test hot firings showed no significant change in thruster performance variables.

Another thruster valve, in addition to the development component, was subjected to a life-cycle

test after the acceptance level vibration test. Functional tests following 10,000 dry cycles at 6 cps

in nitrogen at 28.12 kg/cm 2 (400 psi) and a million wet cycles (water) at 6 to 12 cps at 28.12 kg/

cm 2 (400 psi) agreed with pretest data. The post-test leak rate was zero.

The 16 thruster subassemblies used in the prototype subsystem were subjected to the normal accep-

tance test sequence involving functional, leak, vibration, and hot-firing baseline performance tests.

In parallel, the tank/feed control subassembly was vibrated at sine and random qualification levels

at Wyle Laboratories. Some fixture problems lead to notching of the Y-axis random test, but exten-

sive strain-gage measurements at critical areas showed adequate structural margin. The three funda-

mental frequencies found were 165 cps (X), 185 cps (Y), and 185 cps (Z).
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The total integrated subsystem was proof-pressure tested and then subjected to a lengthy series of

functional and electrical tests and internal and external leak checks of all fluid components. The unit

was loaded with hydrazine and combina.tions of thrusters were hot fired at three sets of steady-state

and pulse-mode duty cycles at three feed pressures. The duty cycles consisted of a baseline set

repeated throughout the test sequence, a duty-cycle set that thoroughly explored the limits of re-

quired mission duty cycles, and a mapping set that investigated those duty cycles sensitive to

thermal effects.

The bare outline of the sequence of thermal vacuum temperature conditions and thruster firings
was as follows:

Sequence Temperature Duty Cycle

1 21 °C Baseline

2 24-hr soak at 5°C Duty cycle

3 5°C Cold map

4 24-hr soak at 50°C Duty cycle

5 35°C Hot map

6 21 oC Baseline

The prototype was vacuum cycled among the four temperature levels in verifying subsystem design

and performance using actual in-situ thruster firing data. Following the thermal vacuum test, elec-

trical, leak, and functional tests were repeated. Analysis of test results showed that (1) thrust re-

mained within 5 percent of the nominal blowdown curve over the qualification temperature range;

(2) impulse bit values were linear with feed pressure; (3) EVM thruster-to-thruster repeatability (at

21°C) of impulse bit (Ibi t) was +-7.4 percent maximum and of centroid time was -+8.1 percent maxi-

mum; and (4) the same criteria for the truss thrusters (at 43°C) were +-16.5 percent maximum and

-+12.8 percent maximum, respectively.

Following the full vibration and thermal qualification test in Redmond, Washington, the subsystem

was shipped to Fairchild where it was integrated into the spacecraft thermal structural model and

subjected to further vibration and thermal testing as the thermal structural model was used to verify

overall spacecraft design.

As a means of shortening the schedule and reducing costs, it was planned that ATS-6 would be given

a brief checkout on arrival at Cape Kennedy and then integrated with the Titan III-C launch vehicle

on the gantry where the prelaunch sequence, including flight fueling, would take place.

To ensure that such planning would work out in practice, the thermal structural model was shipped

to Florida and put through the same sequence. Propulsion subsystem related operations during this

activity were as follows:

1. Bench test equipment checkout

2. Hydrazine service cart checkout
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3. Hydrazine shipment and analysis

4. Hydrazine cart loading at propellant storage area

5. Transport cart to level 10 on Launch Complex 40

6. Leak and electrical test of the subsystem in Hanger AE (transport the thermal structural

model to Launch Complex 40 and integration to Titan III C launch vehicle)

7. Fluid/electrical hookup of the propulsion subsystem (in thermal structural model)

8. Flight load of hydrazine in the subsystem

9. Unload and decontaminate the subsystem

10. Decontaminate hydrazine cart.

The results of this practice checkout and propellant loading operation were very successful in bring-

ing to light a number of problems that resulted in several changes as follows:

1. The fill and drain lines incorporating sample valves were modified to eliminate possible

traps for contaminates as indicated by several particle counts that were out-of-specification.

2. The "scupper" design (drip collectors under the fill and drain valves) was modified to

simplify line hookup.

3. Variations in the results of propellant chemical analyses performed at Rocket Research and

at Cape Kennedy led to a thorough study of analytical methods and a tightening of require-

ments for tile propellant to be used in the flight load.

4. Increasing thruster valve-leak rates took a dramatic jump following decontamination of the

subsystem, prompting a major review of leak rates during the program and removal of one

orbit-control jet manifold/thruster assembly on Launch Complex 40 (LC40) for shipment

to Rocket Research to be part of an experimental investigation into the cause of the leaks.

Other more minor operational problems and anomalies were noted for correction prior to the

ATS-6 operations a year later.

The thermal structural model was subsequently shipped to Houston, Texas, for vacuum deployment

tests of the reflector and on to Germantown, Maryland, where other fluid components were removed

to become part of the leak investigation. Few propulsion systems received such extensive qualifica-

tion testing as that experienced by this subsystem.
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GENERIC CONCERNS

During the development and qualification test programs, three areas became of critical concern as

they could affect thruster operation and performance. They were: (1)control and measurement of

particulate contamination in the fluids entering the system and in the system components them-

selves; (2) prevention and measurement of internal valve leakage (through the valve sealing inter-

face; i.e., poppet/seat interface); and (3) measurement of chemical contaminants in the propellant.

Contamination control was a concern from the beginning and all fluids, including water, isopropyl

alcohol, hydrazine, nitrogen, and helium were filtered, sampled, and counted for particulate con-

tamination before introduction into the subsystem each time a new fluid hookup was made. All

fluid equipment including lines, hoses, fittings, and the service cart, were liquid-flush cleaned and

certified better than the following limits expressed as maximum allowed number of particles (of a

size range in micrometers):

Size Maximum Number

Range (#m) Particles Allowed Note

5 to 10 460 -

11 to 25 128 -

26 to 50 10 -

51 to 100 2 No metal

101 and greater 0 -

In general, the procedures and precautions for particulate contamination control were very effective

and only in a few instances was it necessary to reclean or impose extra through flushing to reduce

particle counts to values within specification.

As alluded to in the description of the qualification program, thruster and latch valves developed

sizable leaks in the prototype and to a lesser degree in the flight units.

The original maximum allowed leak rate across thruster and latch-valve seats was 1.8 scc helium

per hour at 272 atm. Toward the end of the program this was increased to 6.0 scc helium/hour

at the spacecraft level. The flight subsystem was launched with leak rates for a latch valve and three

thrusters valves at 18, 9, 10 and 15 scc helium/hour, respectively.

Seat leakage can be due to a number of causes, including wear, poor dosign, particulate contam-

inates or chemical contaminants generated within the system. Valve-leak rates in the prototype sub-

system had progressively increased to a point where an extensive investigation into the cause was

undertaken. As indicated above, components were removed and cut apart and chemical tests on

residues, microscopic examination of parts, electron beam microprobe analysis, and synthesis of

similar materials confirmed that the contaminants were iron, chromium, and nickel earbazates

containing smaller amounts of metallic oxides. Carbazates are easily formed from the reaction of

hydrazine and atmospheric carbon dioxide.
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Each of the assembled units had been loaded with hydrazine, and their thrusters fired during accept-

ance testing. After unloading any remaining fuel, the subsystems were flushed with water and

alcohol and vacuum dried. However, because of lack of information concerning the effect of flush

fluids on the catalyst bed, the process did not include through flushing of the valves. The opera-

tions described with the prototype propulsion subsystem in the thermal structural model also in-

volved partial disassembly to turn the inward pointing east and west thrusters around to avoid

impingement on the antenna elements and repeated checks for leaks. These operations exposed

subsystem elements to the atmosphere. The development of sizable leak rates in the subsystem were

attributed to the consequent formation of carbazate contaminants. The two flight units experienced

considerably reduced exposure to the atmosphere and had fewer leaks at much lower levels, as

shown in Table 6-4.

The results of these effects and other internal reactions in the spacecraft propulsion subsystem

during the flight of ATS-6 are described in Chapter 8 on anomalies and failures.

Propellant was procured to MIL-P-26536C, but additional detailed analyses were made of all drums

and off-load samples from the service cart and the prototype and flight-ready subsystems. A full

analysis of the flight load indicated: hydrazine (N 2 H 4), 98.9 percent; water (H_O), 0.6 percent;

ammonia (NHa), 0.1 percent; unsymmetrical-dimethyl-hydrazine (UDMH), 3 ppm; monomethyl-

hydrazine (MMH), less than 40 ppm; aniline, 0.4 percent; nonvolatile residue, 7 ppm; particulate

(1 mg/1) corrosivity, 5 ppm (iron); chloride, 0.5 ppm; and total organics, isopropyl alcohol, toluene,

etc., 33 ppm. These values were well within acceptable limits. During the analyses, considerable dis-

cussion arose concerning the gas chromatographic method for monomethyl-hydrazine and un-

symmetrical-dimethyl-hydrazine. Different column sizes, packing and detectors (thermal conduc-

tivity and flame ionization) used at the Air Force Eastern Test Range, Rocket Research Company,

and Olin Manufacturing led to varying sensitivities and results. This problem was never fully resol-

ved and is an area requiring further study. Propellant purity is discussed further in Chapter 8.

GROUND SUPPORT EQUIPMENT CERTI FICATION

It should be noted that all service equipment used with the propulsion subsystem passed approved

certification test procedures. This included mechanical fixtures and support equipment, the hydra-

zine service cart, the electrical test set, electrical breakout boxes, the pressurization panels, flow

meters and interconnect hose sets, and wire harnesses.

FLIGHT UNIT ACCEPTANCE

The flight subsystem for ATS-6 followed a test sequence similar to that of the prototype but at

acceptance environmental levels.

Component acceptance tests, tank/feed assembly vibration tests, and thruster assembly baseline

performance firings were completed before integration into a subsystem. The series of proof, leak,

and electrical tests then established a pre-environmental baseline of data.
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The sequence of the thermal vacuum test with thruster performance firings was as follows:

Test Temperature Duty Cycle Set

1 21 oC (70 ° F) Baseline

2 24 hr soak @ 5°C (41°F) Duty cycle

3 5°C (41°F) Cold map

4 24 hr soak @ 45°C (113°F) Duty cycle

5 45°C (113°F) Hot map

6 21 ° C (70 ° F) Baseline

The test data and post-test checks were within those limits established by the prototype and specifi-

cations. The flight unit was decontaminated, cleaned, and packed for shipment to Fairchild. The

subsystem was acceptance inspected upon arrival and subsequently integrated with the flight space-

craft. The various procedures completed at the integrated spacecraft level were listed on page 149.

Figure 6-4 shows the flight tank/feed assembly integrated in the Earth-viewing module and ready

for initial checkout using breakout boxes. Protective covers for one of the tanks, fill and drain

valves, a pair of pitch thrusters are seen and (on the right) the interconnect propellant line and

electrical harness (up) to the orbit-control jet manifold/thruster assembly. The electronics box in

the upper left quadrant of the Earth-viewing module is the actuator control electronics unit that

controlled the space propulsion subsystem (and wheels).

Following a full environmental vibration and thermal vacuum test sequence at Fairchild and God-

dard, the spacecraft was flown to Cape Canaveral on a C-5A aircraft and, except for limited mechan-

ical operations on the transporter, was taken directly to LC40 and mated to the Titan III-C launch

vehicle. Propulsion subsystem leak and electrical checks were performed as part of the overall pre-

launch flow, using the electrical test set and propellant cart on level 10 of the gantry.

The propellant loads for tanks 1 and 2 were 25.2 and 24.9 kg. Instability in the service cart digital-

weight scale readout prior to the final loading procedure prompted a checkout of its electronic cir-

cuits but resulted in no permanent solution. A year after launch a number of loose pins were found

in the digital assembly connector.

During tank pressurization for leak tests at Fairchild, it had been noted that the rise in tank tem-

perature was evidently more than was indicated by the tank-temperature thermistor at the liquid

outlet. As a result, a ground-test thermistor was bonded to the "gas side" of the tank to allow a more

accurate flight pressurization. Tanks 1 and 2 were pressurized to 26.01 kg/cm 2 (370 psi) and

26.43 kg/cm 2 (376 psi) at 20°C using these sensors. Their leads were cut before launch and the

liquid-side thermistor was used for in-flight sensing.

The spacecraft was launched on May 30, 1974, and the operation, performance, and anomalies of

the spacecraft propulsion subsystem are described in subsequent sections.
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EPILOGUE

Of interest, in fight of the extensive qualification and acceptance program outlined above, is the

fact that there were less than fifty malfunctions/failures serious enough to be reported (per God-

dard Space Flight Center procedures).

The following list summarizes them in eight categories with an abbreviated explanation:

Type Number

Thruster valve leakage 18

Latch valve leakage 5

Low performance 6

Mechanical failure 5

Mechanical damage

Electrical failure 4

Wiring error 1

Test equipment failure 5

Total 47

Note

> 1.8 scc/hr helium

>1.8 scc/hr helium

Specific impulse (Isp), bit impulse (Ibn),

chamber pressure (Pc) valve response,
latch valve relief pressure

Bed heater leads, panel inserts, loose latch

valve indicator

Minor tank surface gouge, fill/drain valve
needle and nose

Thermocouple no signal, pressure transducer

overvoltage, valve thermistor

Bed thermocouples

Accelerometer, overlevel, valve

Hindsight suggests that the development, qualification, and acceptance test programs for ATS-6

were more than fully adequate to verify the design. Unfortunately, the program contained a flaw

that eventually cut short subsystem life. It was the subsystem level fueling and thruster firing tests

that undoubtedly played a substantial role in the process that led to in-orbit thruster degradation

and failure, stopping the mission after five years of extremely successful operations.



CHAPTER7

ORBITAL OPERATIONS AND PERFORMANCE

INTRODUCTION

Following the successful lift-off on May 30, 1974, aboard a Titan III-C launch vehicle, the ATS-6

propulsion subsystem performed the required tasks of initial orbit acquisition and trim, east-west

stationkeeping, wheel momentum unloading, station repositioning, and backup attitude control.

System operation and performance level, overall propellant consumption history and thermal con-

trol during these various mission operations are discussed in the following paragraphs.

The discussion begins with the launch and ascent operation, including the initial orbit acquisition

maneuvers, followed by typical wheel unloading cycles and a discussion of all 67 orbit control bums.

Propellant, pressure, and temperature histories follow, and the chapter is concluded with an in depth

discussion of the final de-orbit and depletion bums. During the presentation of the data, only passing

reference to the various component anomalies and failures will be made. Their full details are pre-

sented in Chapter 8.

ASCENT AND ACQUISITION

The propulsion subsystem was launched with the Earth-viewing module latch valves, truss latch

valves, and interconnect latch valves closed, the tank latch valves open, the prime valve heaters on,

bed heaters off, and prime and backup line heaters on low automatic. During ascent, line tempera-

tures warmed as predicted and soon after arriving in orbit, the thermostats established a 24-hour on/

off cycle.

The spacecraft separated from the transtage with rates of about 0.1 degree per second in all three

axes. Following deployment of the solar arrays and reflector, the attitude control subsystem and

spacecraft propulsion subsystem (SPS) were activated and the SPS-1 lines, downstream of the latch

valves, were evacuated and filled with propellant. Wheels and jets were then used for Sun, Earth,

and Polaris acquisition, consuming 0,65 kg of hydrazine. Subsequent full reacquisitions have been

more efficient, consuming only 0.14 to 0.18 kg of propellant.

Prelau nch/Lau nch

Launch configuration of the spacecraft propulsion subsystem is illustrated in Table 7-1.

The tank pressures at launch were 26.08 kg/cm 2 (371 psia) and 26.50 kg/cm 2 (377 psia) nitrogen

gas at 20°C. Temperature telemetry was checked periodically from the time the tanks were loaded

with hydrazine on May 18, (25.2 kg in Tank 1 and 24.9 kg in Tank 2) until launch. The prelaunch

data indicated anomalous telemetry values for the SPS-2 orbit-control jet bed temperatures.

169
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Table 7-1

Launch Configuration

SPS-1 SPS-2

On and In Control On

EVM Latch Valves

Orbit-Control Jet

Latch Valves

Cross Latch Valve

Tank Latch Valves

Valve Heaters

Line Heaters (prime and backup)

Bed Heaters

Ground Control of Jets

Closed Closed

Closed Closed

Closed

Open

Prime On

Low Automatic

Off

Enabled

Open

Prime On

Low Automatic

Off

The predicted warming trend of the SPS propellant lines and thruster valves due to the decrease

of atmospheric pressure was observed during the ascent phase. All line heaters were on at launch;

the SPS-1 and -2 backup heaters went off at T+2:30 and T+2:45 hours and the prime heaters went

off at T+2:46 and T+3:32 hours. The prime heaters came back on within a half-hour and stayed on

for one hour. This cycle was repeated before separation. Once in-orbit operations began, the primary

heater on-and-off times increased to 12 hours on/12 hours off for SPS-1 and 16 hours on/8 hours

off for SPS-2, while the backup heaters had a much shorter duty cycle. The different on times were

due to the different daily Sun-shadow patterns on the two half subsystems.

Tank pressure remained steady throughout the ascent while cat-bed temperatures varied as a func-

tion of Sun angle and Earth shadow.

Line Evacuation/Propellant Bleed-In

In preparing the SPS-1 for jet operation, the 0.67 atm nitrogen in the EVM and orbit-control jet

manifolds downstream of the EVM and truss-latching valves was evacuated. The method was to be

automatic by commanding the attitude control subsystem to Sun-acquisition mode using jets before

the latch valves had admitted hydrazine to the jet manifold lines, thereby producing attitude errors

to open roll, pitch, and yaw jets. However, only roll and pitch errors were large enough to activate

the appropriate thruster valves, so that only the manifolds within the EVM were evacuated. It

was necessary to command open the No. 7 jet (prime westward) for 5 minutes to accomplish

evacuation of the orbit-control jet manifold.

The SPS-1 EVM and truss-latch valves were then opened, bleeding propellant into the manifolds.

The initial tank-1 pressure drop seemed excessive at latch valve opening, but a closer estimate of the

internal manifold volumes of 206 cc, equivalent to 0.21 kg of hydrazine, accounted for the 0.4 arm

pressure drop from 25.2 to 24.8 atm (26.08 kg/cm 2 [371 psia] to 25.66 kg/cm 2 [365 psia] ).
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The evacuation and bleed-in of SPS-2 was to be delayed for 1 day to assess in-orbit temperature

cycling before allowing hydrazine into the backup system. Evacuation was then to be accomplished

by commands from the ground to roll, pitch, and the eastward prime thrusters. However, as a

thermal safety measure, SPS-2 propellant bleed-in was not done until the backup system was actu-

ally needed.

Spacecraft Acquisition Maneuvers

Table 7-2 lists the total jet on times for the three axes for each maneuver during the initial acquisi-

tion covering May 30 to May 31, 1974, and the reacquisition maneuvers on June 10, 1974. The

length of individual jet ftrings was distributed as shown in Table 7-3.

The on times were fairly long with most firings over 10 seconds. Because of this, an average specific

impulse of 2060 N.s/kg was used in calculating the quantities of propellant used. The reacquisition

did not require a Polaris (yaw) maneuver, but even if fuel were added to account for it, the amount

of fuel used was significantly less (by a factor of 4) than during the initial acquisition.

Table 7-2

Acquisition Jet Usage

Initial

Acquisition:

Sun (sec)

(GMT)

Earth (see)

Yaw (see)

Reacquisition:

Sun (see)

(GMT)

Earth (see)

Roll

+R -R

131 50

(150:21:10 to 16:00)

737 759

(150:23:10 to 24:02)

0 0

9 0

39 87

*Jet thrust = 0.53 N (0.12 lbf)

Specific Impulse = 2060 N's/kg (210 s)

Pitch

+P -P

166 94

(21:10 to 21:19)

81 105

(23:18 tb 23:20)

0 0

51 69

(161:11:48 to 12:01)

0 6

(161:12:01 to 13:11)
I

Yaw

+Y -Y

220 35

(21:10 fo 21:21)

0 0

75 45

(151:01:46 to 02:20)

Total

On Time,

(sec.)

696

1682

120

108

0

186

24

423

156

Wt*

Propellant,

(kg) (lb)

0.18 0.40

0.44 0.96

0.03 0.07

0.65 1.43

0.11 0.24

0.04 0.09

0.15 0.33
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Table 7-3

Distribution of Jet Firings

Number of Jet Actuations

Jet On

Time, sec

200

100 to 200

75 to 100

50 to 74

25 to 49

10 to 24

4to9

0to3

Initial

Acquisition Reacquisition

1 0

3 0

9 0

5 4

7 5

14 1

34 20

13 29

Initial Orbit Correction

The highly accurate orbit attained by the Titan III-C transtage required only small corrections by
the SPS. In general, the spacecraft was west of the desired 94°W station with a small westward drift.

Two correction firings of jet No. 7 were initiated on June 6 and 7, 1974. The first was an 8-minute

calibration firing followed the next day by a 31.5-minute run.

Table 7-4 shows the pertinent data. The deviations between the calculated correction and the actual

orbit change were very small as follows:

Measured Deviations

1st Burn 2nd Burn

Drift rate, deg/day 0 0.0011

Semimaj. axis, km 0.196 0.30

Eccentricity 0.0001 0.000044

Inclination, deg 0.0004 0.0002

RA node, deg 0.06 0.06

AV, m/sec (ft/sec) 0.0003 (0.001) 0.007 (0.024)

The No. 7 orbit-control jet thrust vector is canted in the -Y direction above the spacecraft center-of-

mass causing minus pitch jet components. The No. 3 (-P) jet contributes about 2.4 percent of the

total orbit correction impulse (approximately equal to duty cycle); first burn = 2.1 percent, second
burn = 2.4 percent (Table 7-2). The theoretical duty cycle calculated from the ratio of No. 7

and No. 3 (-P) jet moment arms about the spacecraft center-of-mass is 1.7 percent. Uncertainties in
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location and cant angles of the jets, center-of-mass location and jet impulse all contribute to the
difference.

The total fuel used for the orbit correction was 0.58 kg, while 0.65 kg was used for reference atti-

tude acquisition. A total of 9.62 kg had been allocated for these maneuvers, thus providing an extra

reserve of 8.39 kg (18.5 lb).

WHEEL MOMENTUM UNLOADING

A two-day roll wheel momentum unload cycle was established early in the mission, during which

the constant momentum buildup and exchange increased yaw and roll wheel speeds to a point where

they approached the established speed limit of +1200 rpm. Figure 7-1 illustrates a cycle typical of

any on-station, two-day period with a minimum of offset maneuvering. When enabled by ground

command, unloading was done automatically by the attitude control subsystem using roll jets

(nearly equal to twenty 0.2/10 pulses) to reduce roll wheel speed when the yaw speed was near

zero.

Manual command unloading was also tried to reduce roll wheel speed below 300 rpm, resulting in

the 4-day cycle of Figure 7-1. A number of manual operations were performed at yaw speeds

around zero to reduce cross-coupling. It was concluded, initially, that the reduced number of un-

load operations did not justify the greater complexity associated with manual unloading. However,

this unloading technique later became the standard mode of operation.

The center of the 2-day momentum spiral is at a yaw wheel speed of about 300 rpm. This offset,

or yaw bias, is due to solar pressure and shifts with the seasons, being maximum at the solstices and

near zero at the equinoxes.

Pitch wheel momentum unload operations occurred less frequently, generally once every 5 to 7

days.

Figure 7-2 illustrates the accumulation of roll, pitch, and yaw jet pulses u.sed to unload the asso-

ciated wheels during the first 100 days of flight. Cumulative consumption of propellant is shown

along the right ordinate. Based on the trend indicated in this figure, approximately 0.32 kg per year

of hydrazine was required for wheel unloading.

ORBIT CONTROL

Four orbit control thrusters were provided on the spacecraft-two for eastward and two for west-

ward thrusting. Each thruster was intended for long duration firing as opposed to the pulsed opera-

tion of the twelve attitude jets.

A total of 67 in-plane, orbit-control jet maneuvers were executed over the 5-year plus lifetime. The

thruster performance for each maneuver is summarized by Figure 7-3, which gives the mean thrust

for each maneuver according to date and compares this value with the nominal thrust level cal-

culated from current tank pressure. The mean thrust was determined from the change in the mean



ORBITAL OPERATIONS AND PERFORMANCE 175

• I +1000

+1000E÷00o | ÷.oo
¢ UNLOAD

°
91 2- DAY

•1000 .__-_-_L 2-DA -1000

-I000 -B)0 0 +500 +1000 +1500

ROLL WHEEL RPM

, 1 I GMT I)AY: HR: MIN

-1000 -500 0 +500 +1000 +1500

ROLL WHEEL RPM

Figure 7-1. Typical Wheel Loading/Unloading Cycles

1600

1400

,?,1200
f/J

Za1000

600
c_

_=600
=.
==,00

20

0

LAUNCH

30 MAY 74

jl "22E .1

.200 .00

7
J ,175 .08

j7 I .0,-

.150
.00

_,125 -

t .05O.lO=I
|
-].o,6_

025 _' .02

j / PITCH J YAW
_" _.01

t .l i 0 .,_0

1 JULY 1 AUG 1 SEPT 1 OCT

GMT - DAY

Figure 7-2. Wheel Unload Propellant Usage

(0.2/10 Duty Cycle, I s = 140 sec)



176 ATS-6 FINAL ENGINEERING PERFORMANCE REPORT

T--T 1 T I

r
U,I

..I

LL

0

Z
IJJ

(N) .LSnYH.L

f=)
r-

E

4::
03

Q.

t,=,
r"

l-

t-
O

o

r,,.

:3

u_



ORBITAL OPERATIONS AND PERFORMANCE 177

daily longitudinal drift rate based on pre- and post-maneuver orbits, the mean spacecraft mass, and

the actual burn time.

All but seven thruster firings are seen to be close to nominal thrust levels. Of these seven, two dis-

agree due to poor pre- or post-maneuver orbits while the remainder reflect orbit-control thruster

malfunction. See Table 7-5 for a summary of anomalous firings.

Jet No. 7 (west prime) was the only orbit-control thruster to function nominally throughout the

lifetime of the spacecraft. The final maneuvers starting July 31, 1979, and ending August 3, 1979,

could not be evaluated.

Jet No. 8 (west backup) never did produce thrust. During the truss line evacuation starting

August 12, 1978, it was determined that Jet No. 8 was dead. Bed temperature data from the.initial

line evacuation in January 1977 showed that Jet No. 8 did not respond then either. Subsequent

attempts to fire this jet proved futile.

Jet. No. 15 (east prime) functioned normally through the March 28, 1979, maneuver, but was found

to be completely dead on May 6, 1979, and on subsequent attempts. This jet failed abruptly without

warning.

Jet No. 16 (east backup) functioned very well through the August 24, 1978, maneuver-tracking the

nominal thrust levels very closely. During the maneuvers of September 27 and October 5, 1978;

however, the jet operated intermittently, behaving as though the jet was alternately partially blocked

then cleared. The catalyst bed temperature rise failed to follow a smooth curve. This jet failed to

function during subsequent attempts.

Table 7-5

Summary of Anomalous Firings

Anomaly Jet No. Comment

A 15

B 16

C 8

D,E 16

F, G 8, 15, 16

Orbit "perturbed by truss line evacuation before maneuver.
Jet seemed normal.*

Post-maneuver orbit definition was poor. Jet seemed normal.*

Jet was dead.*

Erratic jet operation.*

Jets were inoperative.*

*Evidenced by catalyst bed temperature
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Thruster firing data for eachof the four orbit-controljets aresummarizedby Table 7-6 which
illustratesthewide differencein operationalusageamongthe four jets overthe lifetime of ATS-6.

Thesalientmaneuverparametersfor eachof the67 individualmaneuversarepresentedin Table7-7.
It maybenotedthat mostof the orbital maneuveringwasdevotedto smallstationkeepingmaneu-
vers.The largestsinglemaneuverwasusedto drive ATS-6 to its final below-synchronousdrift
orbit. Whenthe spacecraftwaspowereddownonAugust3, 1979,it wasdrifting eastwardat arate
of 6.05degreesperday.

Theperformanceof the propulsionsystem for orbital maneuvering is summarized according to ma-

neuver phase in Table 7-8. It is interesting to note that only 3.92 kg of hydrazine were expended for

east-west stationkeeping during 4.6 years of on-station operations, whereas 13.49 kg of fuel were

required just for the 39-day orbital repositioning from 94°W to 35°E longitude.

Orbit control impulse (I), incremental velocity (AV), and propellant consumption were normally

calculated from pre- and post-maneuver states. The best estimates of spacecraft mass thruster

efficiency and specific impulse were used in each case. Propellant consumption for attitude control

was taken as the difference between the actual total consumption and the estimated propellant
expenditure for orbit control.

Table 7-6

Orbit Control Thruster Firing Data

Service Life

Longest (First use to Total

Thruster No. Times Total Firing Continuous last use) Throughput

No. Usage Fired Time (Hrs) Burn (Hrs) (Yr) (kg) (lb)

7 West 12 47.7 28.1 5.2 20.8 (45.9)

prime

8 West .... 0.0

backup

15 East 37 25.5 4.1 4.0 14.6 (32.1)
prime

16 East 18 3.4 0.3 1.6 1.4 (3.0)

backup

Total 67 76.6 - - 36.7 (81.0)
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PROPE LLANT CONSUMPT ION

Prior to launch, 50.17 kg of hydrazine were loaded into the spacecraft-25.22kg in SPS-1 and

24.95 kg in SPS-2. Propellant utilization through the end of the mission is compared to the budgeted

consumption in Table 7-9. The relative consumption from SPS-1 and SPS-2 over the mission is pre-

sented in Figure 7-4. Propellant remaining was calculated using tank volume, pressure and tempera-

ture, blowdown characteristics, and initial state. The pressure sensor, although actually measuring

hydrazine pressure, also indicated nitrogen pressure since the pressures were equalized as long as the

diaphragm was floating. The temperature sensor, located on the liquid side of the tank, provided

only an approximate measure of nitrogen temperature. The indicated temperature was a function

of Sun angles and electrical loading and generally lagged the true gas temperature. Application of

the gas law to the nitrogen pressurant was accomplished by taking the daily mean of pressure and

temperature readings at two-hour intervals. A calibration correction was then applied to the mean

pressure. The corrected mean values were used to compute the propellant remaining in each tank.

Such a procedure smoothed the data and provided a consistent calculation of onboard fuel.

Table 7-9

Hydrazine Propellant Consumption

(Comparing 5-Yr Budget to Actual Usage)

Load at Launch

Ref. Attitude/Orbit Acquisition

Budget

kg (lb)

49.08 108.2

9.6 21.2

kg

50.17

1.7

1 Year @ 94°W

10 months @ 94°W

40-day move to India

39-day move to India

1 Year @ 35°E

13 months @ 35°E

120-day move to 140°W

2_A year @ 105°W

32 months @ 140°W

AC Contingency

Deorbit

Unallocated Reserve

Propellant Depletion

Residual

2.6 5.8

14.6 32.1

2.1 4.7

5.2 11.4

5.4 12.0

7.9 17.5

1.3 2.8

0.4 0.8

0.6

14.9

5.3

5.9

6.5

12.5

2.7

Actual

(lb)

110.6

3.8

1.4

32.8

11.5

13.0

14.3

27.6

6.1
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A typical day's readings are illustrated by the temperature/pressure plot of Figure 7-5. The solid line

in the figure is the pressure/temperature characteristic that represents the existing state of the fuel

in that tank. On this particular day the tank pressure and temperature variations were 8 psi and

13°C.

Deviations of 1.47 psi and I°C in the mean pressure and temperature values influence the calcula-

tion of propellant remaining by 0.14 kg (full tank) to 0.73 kg (empty tank).

Propellant consumption during the several mission phases over the life of the spacecraft is shown by

the plots in Figure 7-6 that indicate propellant usage for attitude control and orbit control. The

consumption rate (slope of curve) was quite low for most of the five-year, two-month lifetime. The

periods of high consumption included the two sets of repositioning maneuvers, the final change to

a lower orbit, and fuel depletion.

Commencing June 1, 1978-four years after launch-propellant was used very sparingly in the sup-

port of attitude control. Special conservation measures were taken by the operating personnel to

unload the reaction wheels at the most effective times, to maneuver on wheels as much as possible,

and during idle time, to point the spacecraft to take advantage of solar torques.

The thrusters were used extensively for attitude control in the middle of 1975 when a roll-wheel

drive problem appeared, followed by Apollo-Soyuz support. Prior to the deorbit maneuver of

July 31, 1979, 15.0 kg of propellant were still available-equivalent to 7 years of normal operation.
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THERMAL CONTROL

Figures 7-7 through 7-10 are typical 24-hour cycles of the thruster valve, propellant line, catalyst

bed, and tank temperatures. The data was taken while SPS-1 and -2 prime valve heaters were on,

the prime and backup line heaters were in the low-automatic mode, and catalyst bed heaters were
off.

Predictions had indicated a daily temperature range for the valves of from 5°C to 75°C. The actual

initial cycle was from 25°C to 96°C with the prime catalyst heaters on. This was considered some-

what high and the bed heaters were turned off. The valve temperatures then cycled between approx-

imately 12°C to 88°C depending on the angle of the Sun.

The difference in shape of the SPS-1 and -2 component cycles was due partly to the daily sequence

of exposure of sunlight and shadow as the spacecraft Sun angle changed. The line temperatures

were under thermostatic control and consequently exhibited a much narrower cycle. The pro-

nounced difference in temperature between the two SPS-2 orbit control thrusters that is reflected

in their valve temperatures was checked during the special radio frequency compatibility test and

found to be anomalous. The minimum catalyst-bed temperature of about -15°C was not a problem,

considering that temperature cycle tests at GSFC and Fairchild were run to -50°C without damage.
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Figure 7-6. Propellant Consumption History

The temperature rise of the No. 7 catalyst bed during steady-state jet fLffng was as predicted, reach-

ing a steady-state value of 650°C in 90 seconds. The -pitch thruster (2.4 percent duty cycle) reached

450°C during the 8-minute bum and 505°C during the 31-minute burn. Minor pulsing of attitude

jets is clearly evident from the bed-temperature telemetry. The No. 7 thruster valve cooled down

from an initial temperature of 66°C to 46°C during the long steady-state burn and after jet cutoff

increased to a maximum value of 78°C.

Figure 7-11 shows SPS-1 valve temperature data for September 4 and September 5, 1974 (fourth

day of shadow), with an occult period between 5:55:02 and 6:31:45 and an umbra condition

between 5:59:41 and 6:27:06. The temperature of valves 7 and 8 dropped to 80C and 9°C. Because

of the exposure to sunlight during the daily cycle, SPS-2 valve temperatures were 20°C and 60°C

greater than those of SPS-1 at the time the spacecraft entered occult and they did not approach the

freezing level during the shadow period.

Because of the need to conserve electrical power during occult, it was decided to warm the SPS-1

valves to the SPS-2 level using the backup heaters, turning them off just before entering shadow.

Figure 7-12 illustrates the warmup for the case where the backup heaters were left on during

occult, and for the case where they were turned off. The minimum temperature was 10°C (freezing

point of hydrazine = 2°C). The warmup, using the SPS-1 backup heaters, was standard operation

during the occult season.
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PROPELLANT PRESSURE

Propellant pressure was measured by a pressure transducer installed on the liquid hydrazine side of

each tank. Daily pressure excursions of several psi resulted from temperature variations of the nitro-

gen pressurant. As propellant was consumed, the hydrazine pressure dropped accordingly. Since this

was a blowdown system, incremental pressure dropped rapidly at first then tapered off as propellant
was expelled.

The curves of Figure 7-4 portray the pressure history of each tank from launch to end-of-life some

five years later. It will be noted that the largest pressure changes occurred during repositioning ma-

neuvers, the final orbit change maneuver, and at end-of-life when propellant was deliberately

depleted. The final pressure drop occurred on August 3, 1979, when the second tank (tank 1)dia-

phragm bottomed out. At that point the nitrogen pressurant could no longer pressurize the hydra-

zine and the pressure dropped rapidly toward zero.

The crossfeed latch valve connecting the two systems was first opened on August 1, 1979, as the

tank pressures were equal at approximately 10.12 kg/cm 2 (144 psia). This valve was left open

thereafter to ensure depletion of the hydrazine in tank 2. Because of the initial hydrazine loading

and nitrogen pressurization, tank 2 emptied first at equal pressure on August 2, 1979.
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TERMINAL MISSION MANEUVERS

Orbit Change

This next to last maneuver was designed to place ATS-6 in an orbit significantly below synchronous

altitude. An orbit above geosynchronous altitude was preferred, but due to telemetry and attitude

jet problems, it was deemed prudent to proceed to a lower orbit that would afford extended visib-

ility from Rosman. The maneuver was to continue without interruption until all but 2.27 kg of

hydrazine had been expended or until attitude control could no longer be maintained. The 2.27 kg

of propellant was deliberately held in reserve for the final roll spinup maneuver.

The actual orbit change maneuver lasted for 28.1 hours with large roll, pitch, and yaw excursions

developing due to inoperative attitude jets and the continued anomalous performance of the roll

wheel drive. The positive yaw jet (No. 5) fortuitously revived just when needed.

The indicated pressures of tanks 1 and 2 and the catalyst bed temperature of the orbit control jet

(No. 7) during the course of the orbit-change maneuver are illustrated in Figure 7-13. The pressure

readings change in increments of 0.14 kg/cm 2 (2 psi)-the resolution of the telemetered pressure.
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During the first portion of the maneuver, the tank-1 pressure dropped steadily as fuel was consumed.

The tank-2 pressure increase was due to a tank-2 nitrogen temperature rise. Based on an expected

0.21 kg/cm 2 (3-psi) calibration pressure differential between the two tanks, the cross-latch valve

was opened (for the first time) as soon as the tank-1 pressure, Pl, indicated 0.28 kg/cm 2 (4 psi)

below the tank-2 pressure, P2" In reality there was a 0.42 kg/cm 2 (6-psi) differential pressure as

shown in Figure 7-13.

Roll Spinup and Propellant Depletion

The final ATS-6 maneuver was designed to spin the spacecraft about the roll axis (X-axis) oriented

along the sunline and to deplete the 2.7 kg of onboard propellant.

Starting at 1429Z, the spacecraft +X axis was first pointed at the Sun, then the positive roll jet

(No. 2) was commanded on in a continuous mode. When the roll rate reached a value of 2 degrees

per second, the west prime orbit-control jet (No. 7) was commanded on and burned .steadily for 8.8

hours. Due to the orientation of No. 7, the time interval over which the orbit-control jet fired-

while the spacecraft was solar-oriented-probably had little effect on the semimajor axis, but un-

doubtedly did slightly increase the eccentricity of the final orbit.
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When the roll rate reached a value of 4 degrees per second, the positive yaw jet (No. 5) was turned

on in the continuous mode to aid in the fuel depletion process. It was judged that the spacecraft

was sufficiently roll-rate stabilized to avoid perturbing the spin-axis orientation with a yaw jet

firing. From this point on, all three thrusters (the only functional jets left on the spacecraft) fired

continuously for approximately 5 hours.

Since the cross-latch valve had been open from the previous maneuver, fuel was drawn from both

tanks even though all three firing jets were on system 1. At 1844Z on August 2, 1979, the tank-2

diaphragm bottomed out, thus the nitrogen in that tank could no longer pressurize the liquid

hydrazine. From this point on both pressure readings were supported solely by the pressurant in

tank-1.

The intricated tank pressure readings and the significant maneuver events are presented as a function

of time by Figure 7-14. The most interesting part of the entire 11.1-hour maneuver occurred at

0022Z on August 3, when the diaphragm of tank-1 bottomed out. As soon as this happened, the

pressure readings immediately started a rapid fall. When the diaphragm stopped floating, the catalyst

bed temperature of jet No. 7 (the orbit control thruster) was 618°C. At 0109Z the nonessential

bus was turned off for 9 minutes-shutting off all three jets. At the time of turnoff, the catalyst bed

temperature had dropped to 2800C but the tank pressures were also low (1.687 kg/cm 2 [24 psia]

and 1.968 kg/cm 2 [28 psia] ). Only jet No. 7 was again turned on at 0119Z. The catalyst bed tem-

perature rose to a peak value of 465°C at 0127Z then gradually decreased to 280°C at 0137Z at

which time all telemetry was turned off. Jet No. 7 was left on, however, to get rid of the last bit of

hydrazine.

As a result of this final spinup maneuver, ATS-6 was left spinning about its X-axis (with positive

roll rate) at a rate of 9.6 degrees per second (1.6 rpm). The final spin-axis orientation was estimated
to be:

right ascension

declination

132.1 degrees

17.8 degrees

ATS-6 was given an eastward drift rate of 6.05 degrees of longitude per day.
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CHAPTER 8

IN-ORBIT ANOMALIES AND CONTINGENCY OPERATIONS

INTRODUCTION

The following discussion of anomalous behavior and failures concerns test and operational problems

encountered during the mission lifetime of the ATS-6 spacecraft propulsion subsystem. The first

two items involve failures of heater elements. The first of these was the loss of a primary valve

heater that the backup heater was able to replace, while the second was a failure of both prime a_ad

backup valve heaters that required a change in normal operations. The third item is an instrumenta-

tion anomaly caused by rf susceptability of a thermocouple circuit that had little impact on system

operation. The final section is devoted to discussion of the many thruster failures that occurred as

the flight progressed, finally prompting a decision to terminate the mission before all orbit control

was lost. Factors contributing to the thruster failures are discussed in detail with contamination

being identified as the most probable cause.

Contingency operations that were necessary to continue the mission are discussed, and design con-

clusions to be drawn for the benefit of future programs finish each section.

SPS-2 VALVE HEATER DRIVE FAILURE

During temperature checks on July 31, 1974 (GMT 212: 12:40), it was noted that the four SPS-2

thruster valve temperatures were very low (No. 13, -16°C; No. 14, -4°C; No. 15, -22°C; and No. 16,

-20°C). Data for the previous day at the same time indicated values between 25°C and 40°C. Com-

manding the SPS-2 prime heaters on (again) produced no change in temperature. The backup

heaters were then commanded on, and valve temperatures rose to their normal values within three
hours.

Subsequent flight data and flight test data analysis showed the failure to be in the prime heater

driver circuit and associated with a random electronic component failure. The valve heater system

is described in the next paragraph followed by a description of the failure, an analysis, the conse-

quences of failure, and the design conclusion.

Valve Heater System Background

The ATS-6 spacecraft propulsion subsystem (SPS) featured 16 catalytic hydrazine thrusters arranged

in two functionally redundant half-subsystems (SPS-1 and SPS-2) fed from two propellant tanks

(Figures 5-1 and 5-4, Chapter 5).

Liquid hydrazine was fed to the SPS-1 and SPS.-2 truss thrusters through separate propellant lines,

each wrapped with independently powered line heaters to keep the liquid hydrazine in the lines

197
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from freezing (2°C). The line heaters were normally thermostatically controlled, although low (2.5

watts) and high (8.8 watts) constant-power modes were available on command. Prime and backup

line heaters were provided for SPS-1 and SPS-2.

Prime and backup valve heaters were provided for the SPS-1 and SPS-2 truss thrusters to keep them

from freezing as well (Figure 8-1). The four primary valve heaters and the four backup valve heaters

for SPS-1 (SPS-2) were wired in parallel (in sets of four) from separate heater drive circuits located

in the actuator control electronics. A simple constant power on-or-off command mode was provided

for each set of four heaters. Thermister temperature transducers were provided for the eight truss
thruster valves.

No valve heaters (nor valve temperature sensors) were provided for the eight thrusters located in the

thermally-controlled Earth-viewing module. Prime and backup catalyst bed heaters were provided

for the eight SPS-1 and eight SPS-2 thrusters. Single on (constant power) and off commands were

available for each of the four sets of eight parallel-wired heaters.

The SPS contained seven latching valves for isolating the two tanks and combinations of the eight

thrusters located in the Earth-viewing module and the eight thrusters located on the truss.

[
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Figure8-1. SPSThrusterSubassembly--TrussConfiguration
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Description of Failure

SPS valve temperatures, SPS power status, spacecraft load bus current, and all spacecraft commands

were evaluated for the 24-hour period covering the failure. Figure 8-2 is a plot of the temperature

data from this period and shows the time of failure and the subsequent temperature variations.

During this period no commands that could have affected the SPS had been executed, and the space-

craft bus current showed no abnormalities.

The failure analysis focused on the nature and history of the heaters and on the design of driver

circuits in the attitude control electronics.

Malfunction Analysis

The test history of the valve heaters was reviewed. No failures had occurred, and no anomalous

operation had been observed either at Rocket Research Company or Fairchild. Resistance, high

potential, and response-on-activation measurements had all been normal (resistance = 294 to 304

ohms, specification: 296, +30 ohms; high potential = 35 k to 80 k megohms, specification: equal to

or greater than 100 megohms).
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The prime and backup heater elements for each valve were potted together in a C-shaped cylinder

that was bonded to the valve body. The two lead wires from each heater element ran from the

heater to connector J-9 (SPS-1) or J-10 (SPS-2) on the actuator control electronics box. Inside the

actuator control electronics, the eight leads from either a prime or backup set of four heaters (SPS-1

and -2) were wired in parallel on a terminal board and connected to a single driver circuit. The

driver was a solid-state switch with associated current limiting and latch circuits.

The fact that an external open failure of any single valve heater would not prevent operation of the

remaining heaters eliminated such a failure from consideration. An internal or external short would

cause current limiting in the circuit and prevent heater operation. An internal open or circuit com-

ponent failure would lead to the same result.

Current was limited by the circuit to 0.5 to 0.6 ampere, and a short would result in a similar increase

in the spacecraft bus current for the 250-ms heater command period. If no change in bus current

occurred, an internal open failure would be implied. In addition, if the heater malfunction was the

result of a failure of the latching function of the circuit, the normal current of approximately 0.3

ampere would be drawn during the command pulse.

For the test, the communications subsystem was configured to draw enough power to discharge

the batteries. In this configuration, changes in load current could be detected using the battery

discharge current (telemetry channel 57) that was about three times as sensitive as channel 65

(the spacecraft load current). In addition, the wheels were taken out of the control loop, elimina-

ting their influence on load current. When the SPS-1 backup valve heaters were commanded on,

the normal current of 0.3 ampere was clearly evident on the stripchart recorder. The SPS-2 prime

valve heaters were commanded on four times over a 25-minute period. No current transients were

visible on the recorder, nor were any seen in the channel-57 digital printout.

After a review of the circuit design by Fairchild and Honeywell, it was concluded that, while the

driver circuit was specifically designed for the ATS program and had not been used on other pro-

grams, it was fully adequate for the application. This conclusion was reinforced by the fact that

there were no malfunctions recorded during component and subsystem testing at Honeywell or

during Fairchild integration and spacecraft level tests.

It was concluded that the prime heater driver circuit was open probably due to a random failure of

an unknown part.

Consequences of Failure

Operation with the SPS-2 backup valve heaters on (with the prime heaters failed) left no backup.

The bed heaters were normally off except for periods when jet operation was anticipated.

The temperature data shown in Figure 8-2 indicate that operation with the SPS-2 backup heaters

was the same as with the prime heaters. Since propellant was not bled into the SPS-2 manifold yet,

it was possible to operate with the backup heaters off, allowing the dry valves to go to temperatures

below the freezing point of hydrazine.
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The valve vendor, Parker Hannifin, had no low temperature cycle data on the valve. Rocket Research

Company had subjected one dry valve to 25 cycles between -100°C and +38°C. Before-and-after

leak and electrical checks indicated no change in performance. Freeze-thaw tests at Rocket Research

Company during the ATS program subjected a valve filled with hydrazine to 3 cycles between

-45°C and +66°C. The valve was operational and visual inspection showed no external damage; how-

ever, an additional six cycles caused a circumferential valve-body weld to crack allowing external

leakage of hydrazine.

Discussions with Rocket Research indicate that neither they nor Parker Hannifin were concerned

about dry-valve temperature cycles between approximately -25°C and +500C (as compared to

+10°C to +90°C with the valve heaters on). The sensitive area where the poppet rests on the valve

seat was under spring compression force and would tolerate any minor motions due to thermal

expansion. However, temperature cycling of a wet valve below the freezing point of hydrazine

(2°C) could rupture the valve body and cause possible internal damage.

With the manifolds filled, the backup heater and the higher solar heat input to the SPS-2 thrusters

was adequate to maintain valve temperatures above the hydrazine freezing point throughout the rest

of the mission.

Design Conclusions

No changes to the SPS heater system are recommended as a direct result of this failure. Ground

testing of the heater drive circuit was free from malfunction and backup heater performance was

adequate to maintain valve temperatures above 10°C throughout the rest of the mission. The

random nature of the failure pointed up the desirability of backup capability on critical system

elements.

SPS-1 VALVE HEATER FAILURES

On October 11, 1976 (2 years, 4 months into the mission), the SPS-1 truss valve heaters failed

during a combined prime and backup heater powered mode. The failure was characterized by a

rapid increase in the number 8 thruster-valve temperature followed by a decay in all four truss

thruster-valve temperatures during the eclipse period. Analysis and ground testing has shown that

combined powering of the prime and backup heater elements probably caused gradual degrada-

tion of the heater element insulation. This led to local shorting in the number 8 thruster-valve

heater that eventually cascaded into a failure of both prime and backup heater driver transistors

and loss of all SPS-1 truss thruster-heater power.

Malfunction Analysis

A limited command test was performed, starting on 03:51 on October 12, 1974. The purpose of the

test, which was patterned after a similar test performed following failure of the SPS-2 prime valve

heaters on July 31, 1974, was to establish whether a short or open condition existed in the affected

SPS-1 actuator control electronics-heater circuitry. No current turn-on transients were observed

during repeated executions of the prime and backup valve heater-on commands. This implied that

an open condition existed in the associated circuitry.
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A second SPS-I valve heater command test was run on December 5, 1976. The lack of any current

transients on the spacecraft power bus during execution of heater on commands verified that the

affected actuator control electronics-drive circuitry had failed in an open condition. This was con-

cluded to have been precipitated by partial shorts in thruster number 8's prime and backup valve
heaters.

An investigation was performed of valve heat-up flight data during the usual combined use of the

prime and backup valve heaters just prior to each eclipse period. The study revealed that until the

Fall 1976 eclipse season, the heat-up patterns of the SPS-1 positive and negative yaw thruster valves

(number 5 and number 6) and the prime and backup west orbit-control thruster valves (number 7

and number 8) closely matched each other. At the start of the Fall 1976 eclipse season, the valve of

thruster number 8 started to heat up faster and hotter than that of number 7 (Figure 8-3). This dif-

ferential heating pattern became more and more pronounced until, on October 10, 1976, the

temperature of the number 8 valve sky-rocketed to a very high value just prior to the loss of the

prime and backup valve heater functions for SPS-1. These facts supported the conclusion that the

backup valve heater of thruster number 8 developed a partial short early in the Fall 1976 season,

that this short became progressively worse, and that ultimately (through internal overheating

• during the combined heater use prior to the eclipse period) it caused a partial short to develop in
the prime valve heater as well. The resulting overdrive load condition caused a failure of the asso-

ciated actuator control electronics drive transistors, leaving the affected circuitry in a failed open

condition (i.e., no prime or backup heater power).

A study was conducted on three flight spare and one engineering model SPS valve heater assemblies.

X-rays revealed that the one engineering model heater and one flight spare heater were wired in an

inconsistent manner. Internal heater leads, with evidently no insulating tape between them, were

alternately wired to +28 V and ground external leads. Only the varnish coating on the wires and

surrounding epoxy in the heater assembly would prevent an internal short of 28 V to ground. Two

other flight spare heaters were wired in a consistent manner.

A 200-cycle thermal vacuum test was conducted on the three flight spare units to simulate the

temperature cycles and combined primary/backup heater power ON phases (all considerably fore-

shortened in time). There was no evidence of severe damage to any of the three heater modules

after the 200-cycle test. Outgassing and some thermal distortion were noted however.

An over power/voltage stress test was then performed to precipitate a failure; the voltage level to

the backup heaters during their powered on phases being increased by 3 volts during each succeed-

ing temperature cycle. One heater module (S/N 89) failed catastrophically after 10 such cycles

(causing the drive electronics to fall in the process) at a voltage level of 52 volts compared to a

maximum rate voltage of 33 volts. The failure was a result of a partial short from the 28-volt lead

of the primary heater to a point on the coil of the backup heater near its ground lead. Coil resis-

tance changes were noted on all three heater modules after the test, indicating some shorting of

turns in each of the heater coils. Severe overheating was experienced by the failed heater module

resulting in melting of the varnish coating on its heater wires, its epoxy casing, and the insulating

kapton film between the heater coils. Considerably less damage was evidenced by the other two

heater modules, involving some melting of the epoxy case and the heat sink bond, and some of the

varnish coating of the heater coils.
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A thermal evaluation/analysis of a heater module subjected to voltages above the nominal 28-V

level was performed. The analysis showed that if gaps or voids developed in the epoxy or Kapton/

adhesives adjoining the backup heater wire, then the elevated temperature of the wire, produced at

an input voltage of about 50 volts, could cause the insulating Kapton to deteriorate and permit a

short to develop. With regard to the actual in-orbit failure of an SPS-1 heater module at a 28-V

level, a similar analysis showed that if a break occurred in the bond of the heater module to the

valve housing (explainable by the observed deformation of heater modules after repeated thermal

cycles) and a gap then developed in the conductive medium surrounding the backup heater wire,

then heater-wire temperatures sufficient to cause deterioration or breakdown of the insulating
Kapton film could also occur.

A study was performed of the printed circuit card wiring drawings for the valve heater drive cir-

cuits in the actuator control electronics. This study revealed that the actual wiring provisions ensure

the presence of independent, redundant circuit paths for the prime and backup valve heater circuits.

Hence, no single-point failure in these circuits could have caused the loss of both the SPS-1 prime
and backup heater functions.

Failure Consequences

A thermal study was conducted of several possible approaches for keeping the SPS-1 truss thruster

valves from freezing. It was found that by commanding the SPS-1 line heaters into a constant high-

power mode, enough heat was conducted to the valves to keep them from freezing. The one excep-

tion to this was the extreme cold condition associated with periods of Sun eclipse by the Earth. An

effective valve-heating approach conceived for this condition was first to vent the SPS-1 manifold

prior to each eclipse season (thereby also precluding the use of the SPS-1 truss thrusters). Next,

during each eclipse period, the four associated valve solenoids were to be continuously activated,
providing a direct heat input to the valve body.

Subsequent SPS-1 truss line evacuation tgsts eliminated some (but not all) of the residual hydrazine

in the lines and provided baseline data on continuously-energized valve heat-up characteristics, these

data being needed to guide the indicated contingency eclipse operations.

As a result of successful reprogramming to enable the digital operational controller to output simul-

taneous positive, negative yaw thruster commands, it was possible to define a relatively simple and

effective operational sequence for thermal control of the SPS-1 truss thruster valves during sub-

sequent eclipse periods. The first two Spring 1977 eclipse operations confirmed the viability of

this sequence and its adequacy for thermal control of dry SPS- 1 truss valves, even during maximum

eclipse periods. Thruster control during eclipse periods was handled by the SPS-2 thrusters that

were operating properly with the backup heaters.

Design Conclusions

As a result of this failure, many conclusions relating to the design and use of similar heater units in

spacecraft applications can be made.
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During the first eclipse period of 1974, performance of the prime SPS-1 heaters (when entering the

eclipse at 15°C) appeared marginally able to maintain valve temperatures above the 5°C design con-

dition. Concern about freezing of hydrazine led to institution of the combined prime and backup

heater mode on SPS-I prior to each eclipse. This maintained valve temperatures at or above a more

comfortable 10°C (with respect to hydrazine freezing temperature of 2°C) during subsequent

eclipses. Post-failure ground testing showed that this combined mode of operation (not included in

heater qualification testing) caused increased outgassing and thermal distortion of the heater. The

testing also revealed design/manufacturing faults that could have contributed to an individual valve

heater shorting failure. Thermal analysis showed that any unbonding of the heater elements from

outgassing or thermal distortion (during a combined mode) would result in heater temperatures

above the insulation degradation point. Once the insulation broke down, shorting of the elements

of the design would follow. When the shorting became excessive (resistance less than 20 ohms), the

heater drive circuits would unlatch or fail, resulting in loss of bothprime and backup heaters.

It was concluded that proximity of the prime and backup heater elements in the design led to

failure of both elements due to a failure in one. Future programs should use a more positive separa-

tion of redundant heater elements. The ATS-6 system was designed to a 5°C minimum tempera-

ture to minimize system power requirements. Future programs should design to at least 10°C (and

take the power penalty) to provide adequate margin above hydrazine freezing during long eclipse

periods.

As identified in the ALERT issued by GSFC on the heater, simultaneous operation of prime and

backup heaters should be avoided on similar parts in use. If this heater is selected for a new pro-

gram, an additional screening test using X-rays is suggested to eliminate high risk parts.

THRUSTER BED TEMPERATURE ANOMALIES

Due to the operating temperature range of 30°C to 1000°C, thruster catalyst bed temperatures

were sensed by chromel-alumel thermocouples rather than thermistors. During ground test, pre-

launch, launch, and initial mission phases, the susceptability of the thermocouples and associ-

ated electronics to radio frequency interference from the prime focue feed reflector caused 10°C

to 100°C uncertainties in various bed temperatures (Figure 8-4). The final level of uncertainty

(10°C to 30°C) did not interfere with detecting proper operation of the bed heaters or the large

temperature change associated with thruster operation. However, differences of 20°C to 300C

magnitude were very noticeable and fell outside of the predicted -+15°C accuracy of the bed tem-

perature monitoring system. The following paragraphs present a detailed description of the obser-

ved temperature anomalieS, test history of the temperature circuit, consequences of the anomalies,

and design conclusions.

Anomaly Description

Anomalous readings on thruster catalyst bed temperatures were first observed during ground rfi

tests. Shielding was added to the SPS actuator control electronics connectors and reduced but did

not eliminate the rfi influence. Further ground tests showed that anomalous readings would dis-

appear ---_'-- *_1_--_.1-....... 'l'..,_.,_o.=._.;'H',_rlby _-r,,= omnldir_etlnnal antenna rather than the reflector.
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Figure8-4. Anomaly ElementIllustration

Table 8-1 presents the prelaunch, launch, and in-orbit temperature and illustrates the magnitude

of the anomalies. (Note: temperature resolution is 4°C). In this table, thrusters numbers 4, 14, and

16 read 15°C to 60°C high when compared to their companion numbers 12, 6, and 15 thrusters.

With no shroud and transmitting on the omnidirectional antenna, the anomalous readings dis-

appeared. SPS-1 thruster activity after deployment interferred with any further comparison.

A special in-orbit test was conducted on July 23, 1974, to determine the effect of telemetry rf on

the bed temperature readings. Table 8-2 presents temperature readings from the test with the trans-

mitter and antenna configured five different ways. Again resolution is 4°C per unit count.

With no change in transmitter configuration (first two columns), five one-count changes occurred

in 5 minutes. Times between configuration were variable and all shifts were one-count changes

except when the A2 (137 MHz)/prime-focus feed combination was turned off, switching the tem-

perature telemetry to A1 (136 MHz)/omnidirectional-2. In this case three significant shifts occurred
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Table 8-2

RF Effect on Catalyst Bed Temperatures

Telemetry Transmitter Condition

XMTR

136 A1

137 A2

136 A3

136 A4

Ante_a

OMNI-2

PFF

(None)

OMNI-1

(Day 204)
•15:42:31 15:47:02 15:47:38 16:00:01 16:09:28 16:11:49

I I I I I

1

2

3

4

SPS-1

5

6

7

__8
9

10

11

12

$PS-2

13

14

15

16

-R

+R

-p

+P

+Y

-y

WP

WB

-R

+R

-P

+P

q
EVM

J

q
OCJ

J
q
EVM

J

+Y

OCJ

..JEB

ON ON • OFF • ON ON* ON*

ON* ON* ON* ON'• OFF OFF

OFF OFF OFF OFF OFF OFF

OFF OFF OFF OFF OFF • ON

Catalyst Bed Temperatures, °C

47 ° 43 ° 43 ° 43°¢ 39 ° 39 °

15 15 15 ¢ 19 ¢ 15 15

63 t 67 _ 63 ¢ 59-qp- 51 51

15 15 15 15 15 15

47 47 47 47 ¢ 43 43 52 °

27 27 27 27 27 27 31

51 51 51 _ 47 47 4/--'] 49

47 47 47 t 51 _ 47 47__] 49

39 39 39 39-qp 27 27

11 11 11 I1 t 15 _ 11

71 71 ¢ 67 ¢ 63 63 ¢ 59

19 ¢ 15 15 t 19 19 19

23 _ 19 t 23 23 ¢ 19 19 20

11 t 15 15 t 19-_p- 3 3 24

-9 -9 -9 t -5 -5 -5 -7

11 t 15 15 15 ¢ 11 11 13

"Typical
Values"

*Catalyst bed temperature transmitter

Legend:

t = Normal Temperature Change

= Rapid Temperature Change

• = Transmitter Antenna Change
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with thruster number 14, which has always been sensitive to rf, showing a 16°C change, thruster

number 9 showing a 12°C change, and thruster number 3 showing an 8°C change. No significant

changes were seen when the omnidirectional-1 antenna was activated.

Periodic monitoring of bed temperatures over 24-hour periods during noneclipse periods con-

tinued to show anomalous readings when transmitted by the reflector. Figure 8-5 shows compari-

son thruster bed temperatures for the 24-hour period beginning December 21, 1974. Note the

15°C to 20°C bias between thruster numbers 15 and 16, numbers 2 and 10, and the 0°C to 30°C

delta between numbers 1 and 9.

Test History

Rfi testing, during spacecraft level tests, showed certain catalyst bed temperature readings to be

susceptable. This was particularly true of those thermocouples directly in the beam of the prime-

focus feed. Initial susceptability included instabilities and inaccuracies reaching 100°C. Corrective

action involved the application of additional shielding at all thermocouple connector locations and

retesting with a portable rf source. Rf sensitivity was reduced to an acceptable level (200C) but not

eliminated. Temperatures transmitted by the prime-focus feed still appeared higher than normal,

but read normal when temperature data was transmitted by the omnidirectional antenna. No fur-

ther ground testing was conducted.

Once in orbit, continued anomalous readings were observed. On July 23, 1974, a special in-orbit

test was conducted to quantify the magnitude of the rf effect on the catalyst bed temperature

(Table 8-2).

No general conclusion could be drawn from the in-orbit test data. It appeared that switching in

omnidirectional antennas had little influence on data being obtained by the prime-focus feed.

A significant shift occurred on a few channels when the telemetered temperatures were switched

from the prime-focus feed to an omnidirectional antenna and the prime-focus feed was turned
off.

The improved consistency between companion channels indicated some reduction of rf influence

and the remaining inconsistencies were attributed to system accuracy. It should be noted that dif-

ferences up to 220C between companion" temperatures would still be within the predicted +-15°C

accuracy of the catalyst bed temperature.

Consequences of the Anomalies

The primary function of the catalyst bed temperature monitors was to assure proper operation of

the catalyst bed heaters. This was indicated when a reading of 200°C to 250°C was observed. At

this level 150C to 20"C uncertainty was not significant. A secondary use of the data was to detect

the large (2000C to 600°C) temperature change indicative of proper thruster operation. Again a

15°C to 20°C uncertainty was not significant.
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Once the in-orbit test established that the magnitude of the rf induced anomaly was within accept-

able limits when related to the purposes for the temperature monitor, no further investigation was

necessary. Subsequent temperature transmissions used the prime-focus feed, and all catalyst bed

temperatures remained operational for the duration of the mission.

Design Conclusions

The design of the catalyst bed temperature monitor system (i.e., chromel-alumel thermocouples,

connectors, harness, amplifier circuit, etc.) was adequate for the intended purposes. Rf suscept-

ability caused 10°C to 30°C uncertainties in system elements directly exposed to the prime-focus

feed rf. An in-orbit test established the temperature bias when the prime-focus feed was used. No

impact on bed temperature monitoring resulted from the known uncertainties. A redesign of the

amplifier circuit of the actuator control electronics package could have reduced the uncertainties

beyond the reduction achieved with shielding but at the time, this would not have been cost or

schedule effective.

Future missions with high rf transmission power should consider well shielded and filtered therm-

ocouple temperature systems early in the design phase to minimize rf susceptability.

THRUSTER ANOMALIES

Beginning in February 1977, after 2.6 years in orbit, and continuing to the f'mal de-orbit maneuver

after 5.3 years, a total of 13 of the 16 thrusters experienced various combinations of intermittent

leakage; low, variable, or degrading thrust and impulse bits; or failure to produce thrust upon com-

mand. At the end of the mission, three thrusters were still operating normally, and one was pro-

ducing thrust at a degraded level. Figure 8-6 summarizes the chronology and nature of each of the

failures. Extensive analysis and ground testing both prior to and after launch indicates the most

probable cause as contaminants that either accumulated slowly in the thruster capillary tube or

suddenly plugged the thruster feed. The most likely sources of the contaminants were zinc and

silicon oxide (SiO 2 ) leached from the EPT-10 diaphragm, trace impurities in the loaded hydrazine,

or residual deposits from clean and flush operations after initial ground test hydrazine exposure.

The following sections present the complete description, test history, failure consequences, and

design conclusions relating to the various failures.

Description of Failures

The thruster anomalies and failures are detailed chronologically as follows:

On four separate occasions during January 1976, the SPS-2 negative roll jet number 9

exhibited abnormally high impulse in response to commands. The bit impulse increased

progressively, was quantitatively erratic, and at its maximum was twice that expected.

Attitude control was switched to SPS-1 until May 1976 when a special test indicated nor-

mad jet number 9 operation.
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On February 2, 1977, during a scheduled ATS-6 stationkeeping maneuver, a failure of the

SPS-2 negative yaw jet number 13 was observed. Subsequent testing confirmed a propel-

lant feed blockage as the cause of the failure. Several exercises were scheduled during the

month in an attempt to free the blockage, but all results were negative.

On February 19, a test was conducted to evaluate the performance of the other SPS-2

attitude control jets. During the test, it became apparent that the negative roll jet number

9 had also failed. The negative roll and negative yaw jet failures appeared to be similar.

The discrete telemetry on both jets indicated that the actuator control electronics was

firing them and the valve solenoids were heating UP, indicating that they were being ener-

gized. However, the Catalyst bed temperatures and inertia wheel speeds remained constant,

indicating some sort of propellant feed blockage.

During February 1977, low impulse response on initial pulse trains was indicated on SPS-2

positive yaw jet number 14 (February 1), and SPS-2 positive pitch jet number 12 (February

19). Subsequent pulse testing of the jets indicated normal operation.

Testing of the failed jets on SPS-2 continued during the month of February. On March 4,

an attempt was made to free the obstruction in the negative roll jet number 9 by pulsing

it 2,000 times using a time delay between commands of 0.25 second. This test was similar

to one performed on the negative yaw jet number 13 in February. The results of the neg-

ative roll jet test were negative. Additional testing of the negative roll and negative yaw jets

on March 16 confirmed that both jets were still blocked. On March 30, the SPS-2 negative

roll jet number 9 began to leak as evidenced by an increasing catalyst bed temperature and

increasing roll wheel .speed. During the ensuing 12 hours, it was necessary to issue positive

roll torque commands to maintain acceptable wheel speeds. Several hours later, the catalyst

bed temperature and roll wheel speed returned to normal, indicating that the leak had sub-

sided. All attempts at getting the jet to fire on April 1 were negative.

Because of the concern over the performance of the SPS-2 thrusters, periodic tests of these

jets were initiated on June 3, 1977. Except for the inoperative negative roll and negative

yaw jets, all thrusters responded normally to 5-pulse command sequences on June 3, and

June 17, 1977.

On July 15, during a routine test of the attitude control jets, it was noted that the SPS-2

positive pitch jet number 12 appeared to be firing with less than nominal performance. A

nominal performance from this jet should have resulted in a change of wheel speed from

16 to 18 rpm per pulse but instead, a change of only 10 rpm per pulse was noted. Further

testing of the number 12 jet was carded out on July 19. During the test the output of the

jet degraded further to a thrust level of approximately 6 rpm per pulse.
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A regimen of SPS jet testing was instituted whereby the SPS-2 jets were tested weekly and

the SPS-1 jets were tested biweekly. Results of the SPS-1 and -2 tests conducted on August 6

indicated that SPS-2 positive pitch jet number 12 had further degraded to approximately 1

rpm per pulse from the previous 6-rpm per pulse level. Status of all other SPS-1 and -2 jets
remained the same.

On Number 11, 1977, starting at about GMT 17: 29, several operational mistakes during a

routine reorientation maneuver caused the loss of Earth acquisition. Contributing to this

event was the fact that the SPS-1 negative roll jet number 1 stuck partially open for some

5 minutes after it was commanded off by the onboard control electronics.

On January 11, 1978, prior to a scheduled maneuver, an attempt to adjust pitch-wheel

speed revealed that SPS-1 positive pitch jet number 4 was inoperative. The maneuver was

completed satisfactorily despite the problem. This was the first time that an SPS-1 jet

exhibited degraded performance. Subsequent testing of the SPS-1 pitch jet number 4

showed a resurrection of thrust response. A January 21 test revealed a thrust level of 1.44

rpm per pulse; further testing of the jet saw the thrust level reach approximately 3 rpm per

pulse. The testing of the SPS-1 positive pitch jet number 4 was terminated on February 1,

since the output thrust value remained constant at 3 rpm per pulse during the previous
week.

On January 25, an attempt to unload the pitch inertia wheel revealed that SPS-2 negative

pitch jet number 11 was operating at approximately 40 percent of the expected value

when a multiple execute command (20 executes) to fire was transmitted. A second mul-

tiple execute command was transmitted. Close monitoring of the performance of this jet

indicated no recurrence of the problem.

On January 31, in the process of unloading the roll inertial wheel, it was noted that SPS-2

positive roll jet number 10 was operating at approximately 70 percent of the expected

thrust value. Subsequent firings of this jet indicated normal operation.

On April 24 the SPS-1 truss latch valve was commanded open after which the spacecraft

was carefully monitored for 1 hour to detect any possible leaks in the system, After it was

determined no leaks were present, the SPS-1 positive yaw jets were pulsed in the ground-

control-jets mode to determine their condition. The SPS-I positive yaw jet number 5 was

found to be operating at normal thrust but the SPS-1 negative yaw jet number 6 was com-

pletely inoperative. Testing of the number 6 jet on a regular basis, including commanding

it open (by the digital operational controller) for up to 20 minutes, continued with no

response.

On June 1, 1978, while the spacecraft was in the jet-assist mode, the SPS-1 negative roll

attitude jet number 1 fired. It was noted that the jet remained firing for approximately

seven times longer than normal. This anomaly had been observed previously but did not

repeat itself.
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A stationkeeping maneuver was performed September 27, 1978, using the SPS-2 eastward

backup orbit-control jet number 16. Telemetry indication of lower than expected thrust

was observed and post-maneuver tracking data revealed a thrust level 28 percent of pre-

dicted. A second maneuver was performed on October 5 using the same thruster. Post-

maneuver analysis indicated a thrust level of 45 percent. On October 11, a third station-

keeping maneuver was performed, this time using the SPS-2 eastward prime orbit-control

jet number 15. This thruster performed at 85 percent of the predicted thrust, which was

based on its last use on July 15, 1977.

During a scheduled stationkeeping maneuver on May 6, 1979, SPS-2 eastward prime orbit-

control jet number 15 failed to fire. After repeated 'ON' commands with no response, the

maneuver was cancelled. This jet performed nominally when last fired on March 28, 1979.

On May 8, the maneuver was attempted again, and jet 15 did not fire. It was then attem-

pted using the eastward backup orbit-control jet number 16, which had exhibited low

erratic thrust the last few times it was used, but it too failed to fire. The stationkeeping

maneuver was performed successfully on May 9 using SPS-1 westward prime orbit-control

jet number 7 after doing a 180-degree yaw flip. This required pressurizing the SPS-1 truss

manifold that had been evacuated since August 1978. SPS-1 westward backup orbit-

control jet number 8 was test fired during this maneuver and was still inoperable. (It

appeared inoperable during an SPS-1 truss line evacuation test performed early in 1977.)

The three bad orbit-control jets were tested extensively on May 21 and again on May 25

with no response from any of them.

During a routine roll wheel unload on July 13 the SPS-1 negative roll jet number 1 failed

to respond. To maintain roll stability it was planned to use the SPS-1 positive yaw jet

number 5 at 180-degree yaw as an alternate. However, this jet, which had not been used

since June 25, 1978, also failed to fire. This left the only contingency plan of twice daily

180-degree yaw flips to maintain roll momentum management.

Command 55150 (136 MHz TLM XMTR OFF) was executed August 3, 1979, thus ending

the active life of ATS-6 after more than 5 years of in-orbit operation. Leading up to this

final shutdown, a 28-hour burn of the SPS-1 westward prime orbit-control jet number 7

was completed on August 1. This maneuver consumed 12.5 kg of hydrazine and placed the

spacecraft in an orbit estimated to be 520 km below synchronous with an eastward drift

rate of 6.05 degrees per day. During this bum, the SPS-1 negative pitch jet number 3 and

positive yaw jet number 5 (that came back to life after failing to fire July 13) performed

well to help maintain spacecraft attitude. The orbit-control maneuver was followed by a

continuous burn of the SPS-1 positive roll jet number 2 to fuel depletion, achieving a roll

spin rate of 1.6 rpm. SPS-1 westward prime orbit-control jet number 7 was left on at final

shutdown to allow any remaining hydrazine to escape.

Test History

At the component level each thruster was successfully fire tested, at high and low feed pressure,

before and after acceptance vibration tests using a baseline performance duty cycle.
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The resultsof the 200secondsteady-stateacceptancetestsarelistedin Table8-3.No correlation
with theflightanomaliesandfailuresisevidentfrom thedata.

After installationin thesubsystem,additionalvacuumfire testswereperformedatRocketResearch.
This requiredloadingthe subsystemandsubsequentlyunloadinganddecontaminatingit prior to
shippingto Fairchild.The decontaminationproceduresinvolvedflushingwith waterandalcohol
andvacuumdryingbut with no throughflushingof the individualthrusters.

Followingthesecomponents, assembly, and subsystem acceptance tests at Rocket Research, the

flight subsystem was shipped as an integral unit to Fairchild. The SPS then proceeded through

receiving inspection, installation in the service module, thermal wrap assembly, and electrical inte-

gration with the attitude control subsystem. With the SPS installed, the spacecraft level testing

included the long form test, thermal vacuum cycle and balance, spacecraft acoustic, protoflight

vibration, mass properties, separation, radio frequency compatibility, and finally preparation for

shipment. All ATS-6 prelaunch testing and checkout at the Air Force Eastern Test Range was

accomplished after mating with the Titan III-C launch vehicle on Pad 40, including final hydrazine
fueling.

Throughout the prelaunch period, leak rates across the individual thruster valve seats were moni-

tored. The original maximum allowable leak rate was 1.8 scc helium per hour at 28.18 kg/cm 2

(400 psi). Toward the end of the program this was increased to 6.0 scc helium per hour. Table 8-4

lists the measured leak rates for the flight system taken throughout the test and prelaunch period.

Note that three of the thruster valves were slightly over specification leakage at the time of launch

necessitating a waiver. Flight performance of these valves showed no correlation with the preflight
leak rates.

All fluids, including water, isopropyl alcohol, hydrazine, nitrogen, and helium were sampled and

counted for particulate contamination before introduction into the subsystem each time a new fluid

hookup was made. All fluid equipment including lines, hoses, fittings, and the service cart were

liquid-flush cleaned and certified better than the following limits expressed as maximum allowed

number of particles (of a size range in micrometers): 460 (5 to 10 #m), 128 (11 to 15/_m), 10 (26

to 50/_m), 2 (51 to 100 #m, no metal) and 0 (101 #m and greater).

Considerable effort was expended to ensure that chemical and particulate impurities of the flight

propellant were within limits mutually agreed upon by management of Goddard, Fairchild, and

Rocket Research. Several drums of propellant, purchased to the basic hydrazine specification, were

rejected following analysis at Rocket Research and returned to the vendor. Drum H-4413 was then

selected for flight use from two drums that had acceptable analyses.

Table 8-5 documents the eight analyses performed on this propellant from the time it was first

checked on April 25, 1974 until the post-flight load samples on May 17, 1974, two weeks before

launch. Seven of the eight analyses were performed at the Air Force Eastern Test Range Chemical

Laboratory, including the as-received drum, the loaded cart, samples from the fill lines before satel-
lite loading, and post-load samples.
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When the figures are compared to the requirements column, it is seen that all of the results are well

within established limits. Most of the small variations among the results can be attributed to experi-

mental uncertainty, with the possible exception of the corrosivity figure that indicates some increase

in absorbed carbon dioxide (CO 2 ) with time and handling (i.e., increased possibility of atmospheric
exposure). Discussions with the chemist at the time the samples were .being analyzed indicated that

the minimum detection level for the organic constituents was different for each species and that the

numbers quoted should be used with caution. The analytical figures support the concensus that the

propellant had the necessary and sufficient purity for flight use.

Failure Consequences

For the first four and a half years of the mission, the full redundancy of the spacecraft propulsion

subsystem and revised attitude control system modes of operation allowed normal attitude control

and orbit-adjust maneuvers despite individual thruster failures.

Full three-axis thruster control during any phase of flight was first lost in February 1977 when the

SPS-2 negative yaw thruster number 13 failed. This, combined with the valve heater failures in the

SPS-1 yaw and orbit-control jets, resulted in loss of negative yaw jet control during eclipse periods.

Normal negative yaw jet control was totally lost April 1978 with the failure of the SPS-I negative

yaw thruster number 6. (The inertia, wheels continued to provide the requisite spacecraft yaw

control.)

On May 20 and 21, 1978, a special test was performed to prove that roll wheel momentum could be

properly maintained even if the remaining negative roll jet failed. The test was successful and was

followed on May 31 by a test to determine if the negative pitch jet could be used to maintain roll

wheel momentum. Satisfactory results were obtained and further tests simulating different com-

binations of jet failures were planned and completed satisfactorily on June 24.

Failure of the SPS-2 negative pitch jet number 11 on November 2, 1978, completed the loss of all

SPS-2 attitude control jets.

With the failure on November 21, 1978, of the SPS-1 positive pitch jet number 4, momentum man-

agement of the pitch wheel was switched to solar pressure and gravity gradient torquing by selected

pitch pointings during nonexperiment periods. This failure marked the loss of normal attitude con-

trol operations; i.e., the ability to provide full 24-hour experiment support.

On May 6 and 8, 1979, failure of both the prime and backup east orbit-control jets, number 15 and

number 16, required a 180-degree yaw flip maneuver to perform the normal stationkeeping maneu-

ver with jet number 7. Testing of jet number 8 at this time revealed that it too was still inoperative,

leaving jet number 7 as the only remaining orbit-control jet. Extensive testing of these three failed

jets proved fruitless, prompting the decision to terminate tile ATS-6 mission by mid-August.

Failure of the SPS-1 negative roll jet number 1 and the SPS-1 positive yaw jet number 5 on July 13,

1979, required the implementation of twice daily 180-degree yaw flips to maintain roll momentum

management.



222 ATS-6 FINAL ENGINEERJNG PERFORMANCE REPORT

The final de-orbit maneuver was successfully conducted over the period from July 31 to August 1,

1979. A 28-hour burn on SPS-1 orbit-control jet number 7 was used to place the spacecraft in an

orbit 520 km below synchronous. Following de-orbit, a continuous burn of the SPS-1 plus roll jet

number 2 achieved a 1.6 rpm roll spiri rate and, combined with jet number 7 and number 5 full-on

commands, depleted the remaining hydrazine.

Design Conclusions

With the total SPS thruster's flight performance in perspective, many conclusions can be drawn

relating to the causes and to the prevention in future flights of the various ATS-6 failures.

As a result of extensive literature reviews, ground testing and flight anomaly investigations, the most

probable sequence of events leading to the majority of thruster failures is described in the following

paragraphs.

Hydrazine containing the impurities of Table 8-5 and possibly small amounts of silicon oxide was

loaded into the system where it proceeded to diffuse into and swell the tank diaphragm. Following

launch, the system was activated by opening the thruster valve, evacuating the feed system down-

stream of the latch valves, closing the thruster valve and opening the latch valves. Hydrazine filled

the feed manifold and dissolved the small amounts of residual carbazate salts in the valves leaving

undissolved residual oxides that were the result of previous ground test operations. Steady-state

and pulse-mode operation of the thrusters was initiated and proceeded for the fn_st one and three-

quarter years without incident and within specified performance limits.

During this period (as shown by data from ground tests of EPT-10 diaphragm/hydrazine compat-

ibility), a major source of contaminants, notably zinc and silicon oxide, was in the constant process

of being leached from the diaphragm by the hydrazine. The concentration of these contaminants in

the hydrazine was constantly increasing as a function of the following variables:

1. Time was required for the hydrazine to migrate into the diaphragm and for the contam-

inant products to migrate out into the hydrazine.

. An increase in temperature increased both chemical reaction rates (with zinc) and rates of

physical diffusion (of silicon oxide). A common rule of thumb i_sthat, at room tempera-

ture, reaction rates double for every 10°C increase in temperature.

. The diaphragm (and propellant) also experienced a daily temperature cycle that influenced

the rates mentioned in (2) and resulted in a small expansion/contraction cycle that assisted

the physical migration of the contaminants and the silica filler into the propellant. Once in

the propellant, the contaminants migrated slowly away from the diaphragm surface by

concentration gradient diffusion. The greater the amount of mission time or propellant

expelled from a tank, the greater the concentration of contaminants. At the other end

of the system, propellant was evaporating in the thruster capillary feed tube (Figure 8-7)

following either shutdown from a steady-state run or following each pulse of a train of
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Figure 8-7. SPS Catalytic Reactor Assembly 

short pulses. The volume of propellant between the valve seat and the thruster capillary 
entrance also evaporated but at a much slower rate. It is postulated then that as the approx- 
imately 0.001 cc of hydrazine in the tube evaporated it deposited on the interior tube 
wall whatever minute quantity of soluble or insoluble contaminants it contained. This 
process continued to add material to the irregular inside wall of the tube, progressively 
reducing its cross-section. Contaminant in the larger volume was also concentrated on the 
valve poppet (the coolest surface) as seen during prototype testing (Figure 8-8). These 
processes varied from thruster to thruster because of differences in their capillary tubes 
and thermal environments. Figure 8-9 illustrates the potential contamination buildup and 
plugging areas of the valve/thruster interface. Accumulation of contaminants downstream 
of the filter also occurred in those manifolds that were evacuated for long periods of time. 
Subsequent refilling washed these contaminants toward the various thrusters causing leaks 
or immediate plugging. The slow soluability of these contaminants also resulted in some 
degraded or even plugged thrusters being revived before finally failing. 

Referring back to Figure 8-6 will show that combinations of the postulated plugging, leaking, 
degraded thrust, revived operation, and perfect operation occurred on various ATS-6 thrusters. 
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Figure 8-8. Prototype Valve Poppets Showing Accumulation of 
Downstream Contaminants 
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It is concluded that the causes of these failures were contaminants: (1) left in the system as a result

of previous ground hydrazine exposure and/or, (2) leached from the diaphragm and/or, (3) existing

in small quantities in the loaded hydrazine.

Future long term missions using hydrazine thrusters should minimize potential contamination by:

• Specifying and controlling the purity of the flight fuel to the best state-of-the-art levels

• Not allowing flight feed system exposure to hydrazine until the flight loading operation

• Selecting diaphragm materials with proven low contaminant generation or, where flight

operations allow, elimination of elastomeric diaphragms as an expulsion aid.

Susceptability of the thrusters to contamination should also be diminished by:

• Selecting higher thrust levels and, therefore, larger capillary feed tubes if allowed by mis-

sion requirements

• Using larger capillaries to feed the catalyst bed

• Minimizing the number of pulses on any particular thruster as permitted by mission atti-

tude control requirements.



CHAPTER9

CONCLUSIONSANDRECOMMENDATIONS

INTRODUCTION

The lessons to be learned from the ATS-6 propulsion experience are reviewed in the following

paragraphs in approximate order of importance. Thruster failures due to plugging of the propel-

lant feed passages were a major cause for mission termination and were one of the more critical

generic failures on the satellite. It should also be noted that without the versatility of the attitude

control subsystem and the capability for reprogramming its digital controllers that allowed imple-

mentation of unique control schemes to accommodate thruster failures, the mission would likely

have been terminated before the achieved 5-year life.

Within the propulsion subsystem, thermal control was the next most critical area with several

design flaws in components, rf interaction problems with the communications system and, while

not flight critical, a need for more comprehensive predictions of temperature conditions during

various mission phases and failure modes.

Propellant control and the propellant consumption prediction technique were fully adequate but
could have used further refinement.

A fourth aspect of subsystem operation, in constant use for observation of the above three sub-

system functions, was ground control and monitoring by the command and telemetry subsystem

from the ATS Control Center. A few comments are made regarding technical aspects, philosophy,

and operation.

This chapter is concluded with minor comments and recommendations concerning subsystem elec-

trical and mechanical design, launch site operations, the development program, and the process of

subsystem procurement.

THRUSTER CONFIGURATION AND PERFORMANCE

Aside from thrust failures and assuming, as appears reasonable, no inherent mechanical or catalytic

bed design flaws, the Rocket Research in-orbit thruster performance met specification requirements

and conf'n'med ground test data on steady-state and pulsing thrust, impulse bit, and specific impulse.

The precision of inflight steady-state performance measurement was variable, depending on the

position of the satellite and the accumulated number of ranging measurements. Pulsing performance

on the other hand was quite accurately determined by the sensitive response of wheel speed. Incor-

poration of chamber pressure transducers to improve the measurement of thruster performance,

instead of, or in addition to, the catalyst bed temperature sensors, would have been an expensive

and unneeded option,

227
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The spatial layout and side-by-side redundancy of the 16 jets was a fully adequate configuration

while the mechanical complexity of the orbit-control and yaw-jet assemblies was a necessary result

of overall spacecraft design where the center-of-mass was between the parabolic reflector and the

Earth-viewing module.

CRITICAL THRUSTER FAILURES

The extensive information recorded for each anomaly and failure, including bed temperature and

wheel response data, special in-orbit tests and comparative studies attempting to relate steady-state

or pulsing operation and history of usage to failure mode, were described in previous paragraphs.

Fourteen of the 16 thrusters experienced one or more of the following anomalies:

1. Reduced pulse mode Ibit, over sustained periods that was variable and degraded followed

by return to normal

2. Excessive pulse mode Ibi t

3. Short period of low thrust after shutoff

4. Short period of spontaneous leakage (after plugging)

5. Reduced steady-state thrust

6. Plugging of steady-state thrusters after small or large propellant throughput or without any

use (i.e., failure to operate the first time)

7. Plugging of pulse mode thrusters used infrequently, moderately or intensively after long

periods of inactivity or during mixed steady-state and pulse tests.

The accumulated data provided no basis for a convincing correlation that explains the variety of

failures that have occurred.

A review of the literature and information available in the propulsion community, reveals a long his-

tory of leaks, thrust degradation, and plugging failures attributable to impurities and contaminants

in hydrazine fuel that goes back 10 to 15 years. What is unique about ATS-6 is the extent and

variety of failures experienced on one flight.

What little is known of the chemistry of reactions between hydrazine containing trace impurities

and subsystem fluid components, and between hydrazine and diaphragm materials, that would sup-

port the mechanism proposed in Chapter 8 has been reviewed in Reference 31 listed in the Biblio-

graphy. Figure 9-1 depicts the propellant path from tank to thruster, and Figure 9-2 summarizes

what is logically concluded to be the elements involved in the contaminant process that leads to

flow anomalies and thruster blockage in such a system as was flown on ATS-6. A scaled view of the

passage connecting the valve seat area and the capillary tube was shown in Figure 8-9, Chapter 8,

and is assumed to be the critical area in the flow path.
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Figure 9-1. Propellant Flow Path 

Based on the proposed mechanism, the recommendations of Chapter 8 follow: 

1. Increase capillary feed tube diameter (possibly specifying higher thrust) 

2. Minimize short pulsing (observed increase in “time-between-failures” when multiple pulse 
0.2/10 wheel unload was replaced with single equivalent pulse) 

3. Eliminate elastomeric diaphragms for positive propellant expulsion (consider metallic sur- 
face tension devices) 

4. Stringent control of propellant purity (possible use of highly purified grades) 

5 .  Reduce chance of chemical contamination by not introducing propellant before prelaunch 
operations and by strict controi over ioading of referee iiquids. 
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It is further concluded that test and exposure of the loaded subsystem followed by inadequate

decontamination was a major factor in the failures on ATS-6, and that there might possibly have

been many fewer failures had the subsystem been handled differently while using the same thrusters,

components, diaphragms, duty cycles, and propellant.

Finally, a general comment and recommendation: It is evident that design details (not always plan-

ned) and local conditions of flow and temperature (not always analyzed) produce conditions that

can either promote or prevent flow blockage. Incipient problems may not surface during a test pro-

gram based on particular mission requirements, and new requirements, (involving what appear to be

minor changes in duty cycles, burn times or thermal conditions) can lead to anomalies or failures.

While the problem of contamination-induced flow blockage can probably be reduced by astute

design and analysis and can be more completely identified by programs of extensive testing, it is

felt that further work on hydrazine purity and diaphragm materials could provide the means for

essentially eliminating it.

Processing steps beyond the Viking freezing procedure should be investigated, including distillation

or other methods of removing trace elements, to obtain a purified grade with absolute minimum

impurities for long term missions that operate under conditions where contaminants could be a

problem. Possible new diaphragm materials should be investigated, including fluorocarbon elasto-

mers derived from Teflon, that would provide a more inert method of positive expulsion for those
missions that cannot use surface tension control.

Flow blockage due to impurities and contamination has a long history, is currently causing prob-

lems, and there is no reason to suppose it will disappear. Its elimination will require further coordi-

nated effort within the propulsion community.

THERMAL CONTROL

The redundancy concept for the SPS heaters, which provided prime and backup elements for the

valves, lines, and catalyst beds, was fully adequate and came into full use as the mission progressed.

Thermal control design of the orbit-control jet thruster/manifold assemblies was complicated by the

lack of an early integrated design effort that could have taken into account electromechanical

requirements of both the propulsive and thermal control elements and changing thermal environ-

ment inputs. As a result, the thermal control assembly was overly complicated and difficult to install

because it involved multiple parallel copper wires, sensors, wrapped strip heaters, rfi shielding,

heater and sensor leads, super insulation blankets, grounding strips and fiberglass standoffs, along

the full lengths of the complex external manifolds. It worked well but could have been considerably

simpler.

The very involved line heater controls, including high/low automatic electronic control with manual

override on all prime and backup circuits, were prompted by the uncertainties inherent in the com-

plex thermal control design.
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The singlestringon/off circuits driving parallel groups of prime or backup valve and bed heaters

worked well except for the random electronic part failure in the SPS-2 prime driver circuit. The

backup circuit was activated and performed well throughout the remainder of the mission.

The observed in-orbit temperature limits were within the specified limits indicating the adequacy of

the thermal models in specifying heater size and location. The thermostatically controlled lines

operated as predicted. The manual backup mode provided a thermal input to thruster valves to com-

pensate for valve heater failures. The thruster valves operated at higher temperatures (12°C to 88°C

or 25°C to 96°C with bed heaters on) than predicted (5°C to 75°C), but were well within an accep-

table range.

During the first series of lengthening eclipse cycles, as the SPS-1 thruster valve temperatures ap-

proached their predicted lower limit of 5°C, an overly cautious concern developed. Thus, the back-

up valve heaters were energized in parallel with the prime elements to provide a pre-eclipse warmup

that would ensure a minimum of 10°C during the eclipse period. This concern instituted a procedure

that was used prior to all eclipse cycles and eventually aggravated a design weakness leading to a

combined failure of the prime and backup heaters.

The valve heaters not only contained design flaws (the inadequate thermal and electrical separation

of prime and backup elements and a rigid configuration that could lead to thermal bond separation)

but were also improperly fabricated. While the parallel activation of prime and backup elements

was not stated or tested as a capability (a specification shortcoming), such operation would have

been reasonable with adequate design and quality control of fabrication. It is unfortunate that

many heaters of the same design are on other active spacecraft, but with the restriction against

parallel operation, they should perform without failure.

The rfi problem with bed temperatures was not a major flaw in the design because changes in tem-

perature rather than absolute level were more useful in determining pulse performance and the fact

that the high temperature during steady-state operation is at least a semiquantitative criteria of per-

formance. More attention should be paid to such thermocouple conditioning circuits early in the

design cycle when it is easier to include filtering.

The models and temperature limit predictions were fully adequate for a successful thermal design,

but considerably more efforts should have been spent on the operational aspects of thermal con-

trol. While it was known, for example, that the Sun-shadow sequence was such that the SPS-2

would not require its failed heater circuit to warm up the valves each pre-eclipse period, it would

have been useful to have had predicted temperature data for the daily cycles of such components

at equinox and the solstices; and for special cases of offset pointing, yaw maneuvers, and failure
conditions.

PROPELLANT CONTROL

The two-tank, seven-latch valve arrangement of the feed system, separating the subsystem into two

functionally redundant half systems was effective and fully adequate for the ATS-6 mission. No

problems were experienced with the feed and isolation of propellant. The crossover latch valve
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separatingthe two half systemswasopenedfor the first time after 5 yearsin orbit to depletethe
propellantduringthe de-orbitmaneuver.

The comprehensivebudgetcontainedthenecessarymarginsfor unplannedmaneuvers,failuremode
consumption,and jet experiments.Two unusedbudgetitems,injection error correction(minor
usage),andnorth-southstationkeepingexperiment(dropped)alsocontributedto themarginaccum-
ulation that allowedtheunplannedde-orbitmaneuverattheend-of-mission.

Theinitial evacuationof manifoldpad(gas)pressurefollowedby propellantbleed-inwasunevent-
ful in light of frequentcautionsexpressedin otherprogramsconcerningthe water-hammereffect
whenpressurizedpropellantflowsinto evacuatedlines.

The severalevacuationproceduresduring the missionfor removingpropellant from the orbit-
controljet manifoldsweresuccessfulbecausethethrustersopenedfor evacuationshowedaninitial
peakof hydrazinedecompositionfollowed by decayovera periodof days.However,no specific
instrumentationnor groundtestdatawasavailableto indicatethe extentof liquid removal.Follow-
ing the de-orbitmaneuver,thrusternumber7 wasleft opento fully evacuate,theremainingpropel-
lant; however,a later partial reactivationof ATS-6in November1979indicatedincreasingtank
pressure(from 20 to approximately100psia)and,exceptfor thenumber7 valve,very low valve
and line temperatures(Table9-1). Whatthis suggestsis that the line to thrusternumber7 was
frozenshut andthe gason the pressurizationsideof the diaphragmwasdiffusingthroughthedia-
phragmandincreasingthe pressurein the trappedpropellant.Presumablythe frozenhydrazine
would continueto sublimeinto the vacuumof space,eventuallyclearingthe passagesof the inter-
connectedmanifoldandtanksystem.

The useof the pressure-volumetemperaturerelationshipto calculatepropellantconsumption(or
remaining)washamperedby the pressure-temperaturehystersiseffect that would be essentially
eliminatedby usinga gas-siderather than liquid-sidetemperaturesensor.However,the 24-hour
averageprocedureappliedto the datawassufficientlyaccuratethat the(cumulative)predictionof
final runout waswithin 1 kg (1 hour longerthanpredictedburn of 3 of the4 operativethrusters,
1 operatingat 40 percentthrust). The point-to-pointprecisionof predictionoverthe blowdown
rangewasvariablebeinglessin thebeginning(+0.15kg)andmoreat theend(+0.45kg).

An additionalminor discrepancybetweengroundtestinformationandinflight datawasthe cali-
brationdatafor the two pressuretransducers.The dataindicateda 0.21kg/cm2 (3 psi)difference
betweenthe two telemeteredvaluesat the sameactualpressure,whereas,theactualdifferencewas
0.42kg/cm2 (6 psi)whenthey wereconnectedto thesamepressuresourcefollowingopeningof
thetank interconnectlatchvalve.

GROUND CONTROL/MONITORING FROM ATSSOC

In general, the command and telemetry capability designed into the SPS was fully adequate for

hands-on operation.
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Table 9-1

ATS-6 Reactivation Telemetry

November 24, 1979

- SOL--_RRAY--S'HT" TAP V Aq28

pO_.,ERS r,MT 3P.a:IS:S6"29:_,S3 [')ACUt OUAL.OOOD
.... 2S'V'-REG 2 STATUS

Sell ARNAY S.H..T._TA.P__V_A./Ixq ..... I5'..]..V ...................................
SOL ARRAY SHT TAP V Aa29 15.6 V
SOL ARRAY 5HT TAP V A_Et 16.g V
SOL A_R'AV SHf-'f£P--V"AaaE- .... 15;9 V
50L A_HAY SHT T6P V Aa23 tb,5 V

........................... ,._..

50L ARRAY 5Hr TAP V AQ2_ 14,_ V
SOL. ARRAy...S.HL_T.APV _A_2..S___1S_S 'V
50L APRAy $_T TAP V AL*26 21,3 V
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The CRT "pages" were crowded and would have benefited from the application of human engi-

neering principles. Reasonable requirements for future in-orbit monitoring would be realtime

graphical presentation of critical sets of cyclic temperatures; a constantly updated set of critical

limits coupled with active warning; and an indication of accumulating pulses, impulse, and steady-

state burn time on all thrusters that also provides propellant consumption status.

It is also recommended that failure and backup modes, procedures, and actions be documented in

such a way that they are readily usable by both new and seasoned operational personnel.

A final recommendation concerns the ATS-6 prohibition against not only experimental manipula-

tion of subsystems, which is a reasonable rule, but also checkout of all subsystem modes and redun-

dancy options and specific tests of performance. Other experience would suggest that information

and measurements in the latter three areas should be used to confirm in-orbit performance of

delivered subsystems and to reduce later uncertainties when dealing with possible emergency

situations.

ELECTRICAL DESIGN

From a development viewpoint, the electrical interface to the spacecraft propulsion subsystem

(whereby all component leads were terminated in connectors that were subsequently connected to

the actuator control electronics and the temperature control and signal conditioning unit drive and

conditioning circuits) provided a direct easy way (by breakout boxes) to check out all components

and activate the subsystem for leak and electrical checks.

Except for the failed heater elements and the rfi problem discussed before, all electrical components

and elements performed satisfactorily.

MECHANICAL DESIGN AND INTEGRATION

Spacecraft propulsion systems are frequently mechanically complex, with their elements located at

widely separated points on the spacecraft structure.

The ATS-6 spacecraft propulsion subsyste m was an outstanding example of such complexity with

the feed system and thrusters buried inside and half its thrusters mounted outside the thermally

controlled Earth-viewing module.

In general, the support fixtures, while frequently requiting manual coordination, functioned well

and were effective in assisting in the integration tasks. As previously discussed, the mechanical design

of the orbit-control jets could have been simpler had all requirements been defined earlier.

The tank support tabs required considerable design effort but were fully adequate in test and flight,

as were the other mechanical components including the support shelf, brackets, and fasteners.
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PRELAUNCH OPERATIONS AT HANGAR AE AND LAUNCH COMPLEX40, KENNEDY SPACE
CENTER

The spacecraft propulsion subsystem was subjected to a baseline checkout at Hangar AE and to

more complex leak and flow tests, fueling, and pressurization operation on Level 10 of Launch

Complex 40, with relatively few problems.

The outstanding problem encountered during prelaunch activity was the size, weight, and complex-

ity of the service cart. It was checked out in Hangar AE, fueled at the cape fueling area, and trans-

ported to and used on Level 10. Special reinforced flooring was required in the elevator and on the

floor of Level 10 to satisfy floor loading limits. The manipulation of the many penumatic pilot

valves controlling cart fluids was a slow time-consuming process, and at one point failure of a seal

allowed hydrazine to leak at a pneumatic valve on the control panel. The electronic weight scale

(with digital readout) developed a cyclic drift that led to detailed checking of cards from the elec-

tronics box just before loading of flight propellant, much to the consternation of all concerned. No

fault was found with the circuits, and on reassembly, the drift returned. Manual averaging was used

to determine the final scale reading. A strong recommendation would be to use the simplest and

most reliable service cart with a highly accurate mechanical scale.

It should also be noted that the prelaunch practice session with the spacecraft propulsion subsystem

in the thermal structural model, deemed necessary because ATS-6 was the first satellite checked out

and fueled following integration with the Titan III-C launch vehicle, did much to smooth the way
for the flight unit operations.

DEVELOPMENT/TEST PROGRAM

The ATS-6 planning included an extensive spacecraft propulsion subsystem test program that was

substantially increased as problems developed. As one reviews testing on current satellite programs,

it is evident that ATS-6 had a generous if not more than adequate amount of testing. The extensive

work with the engineering model, prototype and thermal structural model provided great confidence

that the system would work as designed for the 5-year goal period. In a sense, however, it was this

comprehensive nature of the program (specifically as it included subsystem hot testing and state-of-

the-art decontamination) that was the source of thruster failures that eventually overwhelmed the
successfully performing satellite.

SUBSYSTEM PROCUREMENT

Rocket Research is to be congratulated on their performance in designing, fabricating, testing, and

delivering the spacecraft propulsion subsystem. They were highly responsive to requests for, and

questions about, design changes, fabrication, and test of special assemblies, data and data analysis

and, in fact, all aspects of the subcontracted work. They provided an engineering team that pro-
duced quality equipment supported by comprehensive documentation.
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FINAL CONCLUSION

It is clear that one can point with pride to the highly successful communications and experiment

performance of ATS-6 while viewing with concern the lack of detailed experimental information

about the cause of the thruster failures. Such information, if available, might alter the proposed

explanation for their plugging and alter future design practices.

From a propulsion viewpoint, ATS-6 would be a very interesting spacecraft to retrieve for post-

flight examination and evaluation.
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CHAPTER 10

CESIUM BOMBARDMENT ION ENGINE EXPERIMENT

OBJECTIVES

The primary objective of the Cesium Bombardment Ion Engine experiment was to demonstrate a

north-south stationkeeping of ATS-6, with its propulsion system over a long term of operation.

The second objective was to perform attitude maneuvers and unload the spacecraft's momentum

wheels by applying the engine's thrust-vector torques about the spacecraft's center of mass. This

thrust vectoring capability of the experiment could also be used to correct for thrust-vector misalign-

ment and to track the movement of the spacecraft's center of mass.

The third objective was to determine the effect on the spacecraft experiments resulting from the

discharge of cesium ions and aluminum atoms from the ion engine's exhaust impinging on the north

and south surfaces of the Earth-viewing module.

The fourth objective, which was not a part of the ion engine experiment but used the ion thruster,

was to demonstrate the control of the environmentally induced potential on the surface of the

spacecraft. Although this experiment was a separate effort from that of the ion engine experiment,

the ion thruster was involved in performing the measurements.

DESCRIPTION OF ION ENGINE SYSTEM

Ion Engine System Design

The ion engine system consisted of a thruster subsystem and a control logic/power conditioning sub-

system. The two subsystems we're packaged separately for convenience in mounting on ATS-6 and

are illustrated in Figure 10-1.

Thruster Subsystem

The thruster subsystem configuration was cylindrical as shown in Figure 10-1 and contained 3.6 kg
of cesium. A discharge chamber and electrode assembly were mounted at a 45 ,degree angle, with

respect to the propellant reservoirs and the mounting flange, to permit the thrust-vector to pass

through the spacecraft center of mass. A final thrust-vector adjustment was made during the inte-

gration of the spacecraft. A two-grid extraction system provided a thrust-vector of -+3 degrees in

two directions by an accelerator electrode translation. A cesium plasma bridge neutralizer, opera-

ting at the spacecraft potential, was used to produce neutralized electrons. The thruster discharge

chamber used the magnetoelectrostatic plasma containment (MESC) concept in which the bounding

239
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Figure 10-1. Ion Eligine System 

surfaces of the chamber reflected most of the ions and electrons approaching them (Figure 10-2). 
The magnetoelectrostatic boundary forced the plasma to maintain an electric field near the bound- 
ries that reflected the ions back into the plasma. This reduced the ion losses to the walls and in- 
creased both power and mass utilization efficiency. Another favorable aspect of the configuration 
was the low magnitude of the residual field variation within the discharge chamber plasma volume. 
Since the magnetic field was the major cause of plasma density gradients at the screen electrode, the 
MESC technique prqvided a uniform plasma density to allow efficient ion extraction with uniform 
geometry electrodes. 

The shell of the discharge chamber was an iron ribbed hemisphere that provided the magnetic return 
path for the ring of seven magnets. Each of six magnets was a ring of circular cross section Plancover 
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Figure 10-2. Magnetoelectrostatic Containment Geometry 

magnetized normal to the shell. A seventh magnet was a part of the cathode assembly. Boundary 
anodes were mounted to the hemispherical shell and above the magnets. A plasma anode, consisting 
of a tantalum strip, was positioned in front of the cathode to provide the most desirable performance 
and control. 

The cathode construction was a cesium hollow cathode with a small orifice that was mounted on 
the thruster axis and contained an internal coaxial heater. Approximately 10 percent of the cesium 
flow occurred through the cathode and the vaporizer feeding the cathode was automatically con- 
trolled to maintain a selected value of discharge current. The remainder 90 percent of the cesium 
flow was provided by the main feed ring that was biased at the potential of the boundary anodes. 

The screen and the accelerating electrodes each had 1093 aperatures. The accelerator displacement 
method of thrust vectoring, which used the thermal expansion forces to displace the accelerator 
electrodes in a direction perpendicular to the thruster axis, was incorporated into the engine system. 
This action caused a deflection of the individual ion beams that provided the thrust vector. The 
accelerator electrode was supported by an array of eight legs to which electrical heating power was 
applied resulting in the expansion of the legs that produced a translational motion of the electrodes. 

The plasma bridge neutralizer, employed in the thruster, had emission characteristics that varied 
with the flow of cesium through it and with the cathode temperature. External heaters were used 
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on both the cathode and the vaporizer. An auxiliary electrode, located near the cathode and biased 
150 volts positive with respect to the neutralizer, acted as an anode probe that caused enough emis- 
sion current to start the neutralizer when the thruster was off. This probe was allowed to float elec- 
trically and served as a plasma bridge potential sensing element for control purposes when the 
thruster was on. 

Three types of propellant feed systems, the thruster cathode, the thruster anode, and the neutralizer, 
were used and consisted of the zero-gravity surface tension feed with a radial fin geometry to stab- 
ilize the location of the cesium within the reservoir. The feed system assembly was an annular cylin- 
der containing the three types of reservoirs that were electrically isolated from each other as shown 
in Figure 10-3. Each feed system contained a thermally actuated, cadmium sealed, one-shot valve 
and a Pirani pressure sensor. Sealing of the propellant system was accomplished by employing a 
sealed valve at the end of the vaporizer. 

Figure 10-3. Feed System with Insulators and Ground Screen 
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The ion engine provided a thrust of 4.5 millinewtons (mN) or 1 millipound (mlb). Further details

on the design of the ion engine can be obtained from References 1, 2, 3, and 4 listed at the end of

this chapter.

Control Logic and Power Conditioning Subsystem

The primary function of the power conditioner was to convert the power at 18 Vdc to 16 power

outputs required for the thruster subsystem. A control circuitry was incorporated in the unit to pro-

vide a normal startup, run, shutdown, and thrust vectoring of the thruster from the appropriate

command signals that were received. Telemetry circuits in the unit performed the monitoring of the

relevant system parameters. All of the power outputs were supplied by four converters of the paral-

lel 100 percent duty cycle type and operated at a switching frequency of 10 kHz. One of the con-

verters supplied +500 volts (V) at 113 milliamperes (mA) to the ion beam. A second converter sup-

plied -550 V at 0.5 mA to the accelerator. Approximately 8 and 6 watts were supplied to the anode
and cathode vaporizers, respectively. The third converter supplied power to the plasma anode at a

voltage of +16 V and a current of 1.6 A. Power was also supplied to the boundary anode array at

+3 V and 200 mA. The plasma anode supply was referenced to the beam potential at +550 V with

respect to the ground, while the boundary anode supply was referenced to the plasma anode supply.

The fourth converter provided power at +150 V to the neutralizer to initiate the discharge.

The command signals provided by the spacecraft for the operation of the ion engine consisted of 13

command channels that accepted 50-milliseconds (ms) positive pulses at a nominal amplitude of

20 V. These 13 channels consisted of the following:

a. Master Converter On h. Cathode Vaporizer On

b. Master Converter Off i. Cathode Vaporizer Off

c. Neutralizer On j. Anode Feed Vaporizer On

d. Neutralizer Off k. Anode Feed Vaporizer Off

e. Neutralizer Adjust 1. X Deflection Adjust

f. High Voltage On m. Y Deflection Adjust

g. High Voltage Off

The primary parameters of the ion engine were monitored with 12 telemetry channels.

Ion Engine/Spacecraft System

Two ion-engine thrusters were employed on ATS-6, one on the north surface and the second on the

south surface of the Earth-viewing module (EVM). This configuration had the capability of pro-

viding a north-south stationkeeping by maintaining the spacecraft's orbital inclination. Figure 10-4

shows the ATS-6 orbital configuration where the Z-axis or yaw axis was pointed to the center of the

Earth, the velocity vector was in the X-axis or roll axis, and the pitch axis was on the Y-axis. The

ion engines were mounted on the EVM so that the thrust vector formed a 54-degree angle with

respect to the pitch or Y-axis in the roll rotation plane and passed through the spacecraft's center of
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mass. In this configuration a thrust vector of 2.6 millinewtons (mN) was applied normal to the

orbital plane and a vector of 3.6 mN was applied radially outward. To accomplish the spacecraft's

stationkeeping, the two thrusters were operated alternately so that their thrust components, normal

to the orbital plane, were symmeterically applied about the nodal crossings of the Earth's equatorial

plane. The configuration of the ion thrusters on ATS-6 is illustrated in Figure 10-4.

Each ion engine applied 81 percent of its thrust vector (3.6 mN) radially outward resulting in a small

increase in the spacecraft's altitude which caused a corresponding westward drift. This drift added

approximately 20 percent to the natural drift (0.8 degree per year) of ATS-6 whose east-west

stationkeeping was kept at 95 ° West longitude. This additional westward drift caused by the thrus-

ters did not seriously impact on the normal stationkeeping maneuvers of the spacecraft. The system

specifications for each of the two ion thrusters were as follows:

Thrust

Thrust Vectoring

Specific Impulse

Input Power

System Mass

Propellant Capacity

Command Channels

Telemetry Channels

4.5 mN (1 mlb)

+3 ° in X- and Y-axis

2500 seconds

150 watts

16 kg (35 lb)

4400 hours at 4.5 mN

13

12

The exhaust from the ion thruster consisted of collimated cesium ions with a half-angle of 15

degrees, and an efflux of uncollimated cesium and aluminum atoms. The collimated ion beam con-

stituted 90 percent of the thruster exhaust and was referred to as Group 1 ions as illustrated in

Figure 10-5. These ions did not interact with the spacecraft surfaces of the EVM. All of the remain-

der ions, referred to as Group 2 ions, were of the secondary type and were produced within the

thruster accelerating structure with the capability of escaping the thruster. Some of the ions in the

primary beam, external to the thruster, traveled approximately perpendicular to the beam and were

referred to as Group 4 ions. The ions that were produced within the thruster, but had insufficient

energy to escape, were referred to as Group 3 ions. The Group 4 ions and the neutral efflux im-

pinged on both the north and south surfaces of the EVM and on the lower one-eighth of each solar

array. Laboratory tests indicated that the temperature of the star trackers was sufficient so that the

cesium would reevaporate at a rate exceeding the arrival rate. The tests also showed that the accum-

ulation of aluminum did not affect the solar array output over the life of the experiment.

There were three areas on the EVM that were considered critical to the thruster exhaust and con-

sisted of the cooler for the radiometer experiment that operated at 100 K (north face only), the

Polaris star tracker (north face only), and the active thermal control surfaces (north and south

faces). The exteriors of neither the cooler nor the star tracker were in line of sight of the thruster's

ions or neutral atoms; therefore, neither the ions nor the neutral atoms from the exhaust could

reach directly into the interior of the two units. There was still a possibility that a charge exchange

of ions generated in the ion beam could reach these surfaces. The cone on the radiometer cooler was
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biased at 28 V positive with respect to the spacecraft structure to ensure that the charge-exchange

ions would not reach the critical 100-k detector cold plate. A quartz-crystal microbalance contam-

ination monitor was mounted on the north face of the EVM, near the radiometer cooler, to measure

the actual material that might be deposited on the surface. The detector of this device operated at

about 200 K and was not in the line of sight of the thruster exhaust.

An investigation was conducted on the possibility that the exhaust of the ion thruster would inter-

fere with the illumination in the Polaris star tracker. Since the Polaris star is a point source of light,

the star tracker could easily" discriminate between it and the illumination of the ion-thruster exhaust.

ION ENGINE/SPACECRAFT OPERATIONAL RESULTS

Ground Operation

Two ion-engine units were integrated with ATS-6. Ground tests were conducted with the spacecraft

experiments by using a thrust simulator and a flight unit power conditioning system. No interfer-

ence was detected between the ion-engine systems and the spacecraft experiments. In addition to

the interference tests, a life test of the ion engine was also performed. During the life test, the anode

vapor feed control loop showed signs of instability. This problem was resolved by increasing the cur-

rent of the anode feed ring heater.
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Another problem, observed during this test, was that an increase of propellant flow was required

before the discharge could be initiated. The addition of a starter power supply, which provided

65 V on the plasma anode during the predischarge period, corrected this problem.

During the test, a neutralizer cathode heater failed to open in the downstream end and an investi-

gation considered the result as a random heater failure. However, erosion of the downstream face by

charge-exchange ions was observed. Degradation of the Tophet C conductor material by grain

growth was also observed. To avoid this problem the material was changed to Tophet A.

Space Operation

The final tests on the ion engine were performed under zero-gravity in space after ATS-6 was

launched into orbit. Initial operational tests were conducted on the south ion engine because of its

minimum interaction by being on the opposite side of the EVM from the Polaris star tracker, the

radiometer, and the quartz-crystal microbalance contamination monitor. The south thruster per-

formed very well and all of the parameters were similar with those observed during the ground tests.

The data received from a low-energy charged particle spectrometer, on board the spacecraft, indica-

ted the spacecraft structure had a positive potential with respect to the ambient plasma when the

ion engine was not operating and a negative potential with the ion engine in operation. The possib-

ility of radio frequency interference occurring in the spacecraft communications system due to

operation of the ion engine was determined by employing a receiver in the spacecraft i.f. amplifer

for each of the three frequency channels that had the following characteristics:

Center Sensitivity

Band Frequency (G/T, FOV) Bandwidth

Vhf 153 MHz -25 dB/K 6 MHz

S 2250 MHz 6.0 dB/K 40 MHz

C 6150 MHz 9.1 dB/K 40 MHz

No indication of interference was observed in the three frequency channels nor in the telemetry

and command subsystems.

When the ion engine was shut down, all of the attempts that were made to restart it failed. The

cause of the malfunction of the engine could not be determined; however, the most significant

indication of the cause was that the 10 percent decrease in the neutralizer vaporizer current, obser-

ved from telemetry data on several occasions, could be produced by a shorted cathode heater. This

result, in turn, could be caused by an excess of cesium in the vicinity of the thruster. Fifteen

additional attempts to start the thruster produced the same result of heavy overloading of the high

voltage power supplies followed by a system shutdown.

Because of the unresolved failure of the south ion engine, the north engine was then placed into

operation. The initial operation of the second thruster showed that the performance was completely

normal lor u, ii pll_t_l_i UL LII_ I,I_L_. Lille, Ut.lta._L_l waa ._.ua_, uuwl_t .tuJ. u,tt_., l.tv_.t u..tiu _,,t*v.t* ,,,* _L_,,,.*..,._ ,,--,
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attempted similar to that perforrned on the south thruster. An identical failure also occurred with

the second ion engine. The common malfunction that occurred for both thrusters was the continu-

ous overloading of the high voltage power supplies that prevented the restarting of both thrusters.

An investigation indicated that an unbalance of cesium vapor pressure in the feed system resulted in

liquid cesium being expelled into the discharge chamber. This caused the overloading of the dis-

charge and high voltage power supplies. A diagram of the propellant feed system is shown in Figure

10-6. Two methods of approach were taken to resolve this problem. One method, determined in

the laboratory, involved the cyclic operation of the thruster preheater and cathode heaters. The

second method consisted of applying continuous power to the cathode and discharge chambers.

Both methods were applied, but neither approach corrected the malfunction.

Development of New Feed Line Valve

A laboratory investigation was initiated to correct the malfunction of the thrusters. Two actions

were untaken. One consisted of degassing the cesium in the reservoir to assure that all of the fin sur-

faces were wetted and remained in that condition. The second involved the development of a new

feed-line valve that would close sufficiently tight at the end of each engine operation to prevent

cesium liquid from flowing into the discharge chamber.

To ensure that the new feed-line valve would correct the engine problems, the following design re-

quirements had to be met:

a. Minor impact (preferably none) on the existing ATS-6 ion engine electronicspackage

b. Minor impact on the size of the thruster package

c. Operation in a cesium vapor environment over a temperature range of-30 ° to +400 °

Celsius (C)

d. Helium leak-tight seal initially plus an acceptable cesium liquid leak rate following initial

operation

e. Negligible change in opening and dosing temperature over a large number of operating

cycles

f. Negligible change in open dimension at normal (315°C) vaporizer temperature over a large

number of operating cycles

g. Largest possible open dimension within packaging constraints.

The first requirement dictated the use of a thermally actuated design where the vaporizer heater

could be employed for valve operat!on. By maintaining the same heater power and impedance, no

changes were required within the electronics package. Requirement b dictated a tradeoff between

the opening and closing temperature and the maximum open dimension obtained. Requirement c

dictated an all metal design that in turn complicated satisfying requirement d.
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Figure 10-6. Propellant Feed System Schematic I 
Many valves of different characteristics were designed to determine the type that would meet the 
requirement for satisfactory operation of the ion engine. The problem with the original valve was 
that it would not close tight enough at the end of each engine operation to prevent the flow of 
liquid cesium into the discharge chamber. A series of valves were developed using bimetal discs to 
provide the sealing and closing force. A cross sectional view of the new valve design is shown in 
Figure 10-7. The opening discs provided only the plunger movement and were not required to 
compress the closing springs. 

Two types of bimetal material (Chace No. 3600 and 4600), having different temperature charac- 
teristics, were used in the various models of valves that were developed. The two primary param- 
eters that were considered in the development of the valves were the opening temperature from 
the initial closed condition and the open spacing of the discs at the typical operating temperature 
of approximately 3 15°C. These two 'characteristics for the valves that used the 3600 bimetal are 
shown in Figure 10-8. Similar characteristics were obtained for the valves using the 4600 bimetal. 

Leak tightness was measured after the test was performed by using a liquid displacement method 
with the use of helium at 2.0265 X lo5 Pa (2 atm) of pressure. 

Active Control of Environmental Charging 

The University of California conducted an investigation, sponsored by NASA and the Air Force, 
on the feasibility of actively controlling the environmentally induced potential on the surface of 
the spacecraft. This experiment jointly used the cesium-ion engine experiment and the auroral 
particles experiment on board ATS-6 to perform the measurements. 

The ion engine was of the bombardment type using a low-energy cesium plasma as its neutralizer. 
The neutralizer served as a source of electrons to maintain a net charge neutrality when the cesium 
ion source was in operation. Both the ion source and the neutralizer were operated simultaneously 
and were used to alter the current balance of the spacecraft resulting in actively controlling the 

~ 

i 
i 
I 
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NOTE: 

The parts of the assembly are: 

1. Reservoir feed tube (CRES) 

2. Reservoir t o  valve seal (copper) 

3. Liquid cesium wick (CRES) 

4. Plunger (DRILL ROD) 

5. Body (CRES) 

6. Valve to vapor feed tube seal (copper plated CRES) 

7.8,9. 10, 11 spacers (DRILL ROD) 

12. Closing discs (Chace Nos. 3600 or 4600) 

13. High force disc (Chace Nos. 3600 or 4600) 

14. Opening discs (Chace No. 3600 or 4600) 

15. Init ial seal (cadmium) (optional) 

16. Vapor feed tube (CRES) 

17. Valve-vaporizer sheathed heater 

18. Plunger tip (nickel) 

Figure 10-7. Bimetal Valve 
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Figure 10-8. Thermal Valves (3600 MTL)

spacecraft's potential. This effect was measured with the use of the auroral particles experiment.

Results of these tests were performed under the conditions of no eclipse and are presented in

Figure 10-9. These data indicate that the spacecraft's potential was clamped at approximately

-4 volts throughout the 4-day operation of the ion engine experiment.

The cesium vapor flo_v to the plasma neutralizer was regulated to control the potential of an anode

probe in its discharge. The potential of the probe during the 4-day operation of the ion engine was

+4.5 V relative to the spacecraft ground as measured by telemetry. Since the neutralizer cathode

potential was that of spacecraft ground, the potential of the anode probe was at or very. near the
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Figure 10-9. Ion EngineOperation (No Eclipse)

potential of the ambient plasma. If the probe was operated at the spacecraft potential and the

cathode of the plasma neutralizer was operated with a negative bias, the spacecraft probably could

have been held at the plasma potential. Since the ion engine experiment did not have the bias capab-

ility, this concept could not be demonstrated. The biasing feature was incorporated in the USAF
Space Test Program and further details can be obtained from Reference 5.

A series of tests were also performed under the condition of a Sun eclipse. These tests required the

use of the ion-engine neutralizer only. The results of a test are shown in Figure 10-10. These data

indicate that the low-energy plasma neutralizer was sufficient to discharge the spacecraft. Due to

the absence of natural low-energy ions under this condition, the exact potential to which the space-

craft was clamped could not be measured with precision. Some of the experiments of this type have

shown that the spacecraft potential was clamped to approximately -5 V by the neutralizer's opera-

tion. The operation of the plasma neutralizer had also reduced the differential charging of the
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Figure 10-10. ATS-6 Neutralizer/EclipseOperation (April 5, 1977)

spacecraft, but not to the same extent as the operation of the ion thruster. This effect was most

likely due to the larger density of the free low-energy ions associated with the ion thruster's opera-
tion.

CONCLUSION

Both ion engines performed very well in their initial operation in space and met all of the time-

limited objectives of the experiment. When either engine was shut down, it could not be restarted

again. All of the approaches that were taken could not correct this problem.

When it was determined that the malfunction occurred in the feed-line valve, a program was initia-

ted to design new types of valves. The family of thermally actuated valves that were developed and

tested in the laboratory met all of the original design goals. On this basis the new types of valves

could be included in future cesium thruster systems with confidence to provide satisfactory opera-
tion.

The experiments performed on active control of environmental charging on ATS-5 and ATS-6 pro-

vided the first known measurements on the interaction of the natural plasma and an artifically pro-

duced plasma at the geosynchronous altitude. The neutralizer plasma source on ATS-6 maintained



254 ATS-6 FINAL ENGINEERING PERFORMANCE REPORT

the spacecraft's potential within a few volts of the ambient potential for both positive and negative

charging events under all observed plasma conditions. Many measurements of the environmental

charging potentials performed on ATS-5 and ATS-6 indicated potentials in excess of 1000 volts.

From the measurements performed in the experiments, it appeared that the spacecraft could be

clamped at the plasma potential by biasing a low-energy plasma discharge to compensate for the

coupling to the ambient. Operation of the ion engine showed that it suppressed the differential

charging and clamped the spacecraft potential at a f'_ed voltage relative to the ambient plasma.

Experimental data indicated that the dominant factor controlling the equilibrium potential on the

spacecraft was the consistency of the ambient plasma. These experiments have shown that the

active control devices completely dominated all natural current sources. Also, the experiments have

demonstrated that the task of ensuring that the spacecraft was not sensitive to electromagnetic

interference potentially associated with the environmental charging was feasible.
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APPENDIX A

ACS CONTROL LOOPS

The following figures define the control laws implemented in the ACS controllers as discussed in the

design description section. Outputs from these controllers (the digital operational controller [DOC],

and the analog backup controller [ABC] ) drove the actuators defined below. Average spacecraft

inertial characteristics during operational modes were:

Ixx = 1.45 X l0 s kg-cm 2 (10,700 slug-ft 2)

Iyy = 8.27 X 107 kg-cm 2 (6100 slug-ft2)

Itt = 6.37 X 107 kg-cm 2 (4700 slug-ft 2)

Products of inertia were less than 2.71 X 10 _ kg-cm 2 (200 slug-ft 2 ).

WHEEL CHARACTERISTICS

The inertia wheels each had equal spin inertias of 8.62 X 102 kg-cm 2 (0.0636 slug-ft 2 ) and a speed-

torque relation as defined in Figure 1-14, Chapter 1.

REACTION JET CHARACTERISTICS

Reaction jet thrusts varied from 0.667 N (0.15 lbf) to 0.222 N (0.05 lbf) depending upon supply

pressure. (See Part B, "Spacecraft Propulsion," for details.) The locations and orientations of the

jets are shown in Figure 1-16, Chapter 1.
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APPENDIX B

ACRONYMS AND ABBREVIATIONS

A

A
ABC

AC

a.c.

ACE

ACP

acq.
ACS

ACSN •

A/D
ADC

ADPE

ADS

ADSS

ADVM

A/E
Aerosat

AES

AESP

af

AFC

AFTE

AGC

AGE

Ah

AID

AIDSAT

AIR

ALC

ALED

am, AM

AMP

AOS

AIM

A

ampere

Angstrom

analog backup controller

attitude control

alternating current
actuator control electronics

acquisition control program

acquisition

attitude control subsystem

Appalachian Community Service Network

analog to digital

analog-to-digital converter

automatic data processing equipment

automatic deployment sequencer

auxiliary digital Sun sensor

adaptive delta voice modulation

absorbtivity to emissivity

aeronautical satellite

Ahmedabad Earth Station

Appalachian Education Satellite Project

audio frequency

automatic frequency control

Advanced Thermal Control Flight Experiment

automatic gain control

aerospace ground equipment

ampere-hour

Agency for International Development

Agency for International Development Television Demonstration

All India Radio

automatic level control

Alaska Education Experiment

amplitude-modulation

amplifier

acquisition of satellite

antenna pattern measurement

271
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APT

ARC

ASC

ASP

ASSY

ASTP

ASTP-TV

ATA

AT&T

ATC

ATFE

atm, ATMOS

ATS

ATS-6

ATSOCC

ATS-R

ATSSIM

Atten

Aux

B&E

BAM

BB

BER

bps

BRC

BSA

BTC

BTE

Btu

BW

C

Cap Corn
CCIR

CDD

CEE

CES

CESP

CFSS

automatic picture transmission

Appalachian Regional Commission

Aerospace Corporation

automated sequential processor

assembly

Apollo-Soyuz Test Program

ASTP television coverage experiment

automatic threshold adjust

American Telephone and Telegraph (Spacecraft)

air traffic control, active thermal control

Advanced Thermal Control Flight Experiment

atmosphere(s)

Applications Technology Satellite

Applications Technology Satellite-6

ATS Operations Control Center

ATS ranging

ATS simulator

attenuator (attenuation)

auxiliary

B

Broadcast and Engineering

building attenuation measurement
baseband

bit error rate

bits per second
Balcones Research Center

bit synchronization acquisition

binary time code

bench test equipment
British thermal unit

bandwidth

C

Celsius

Capsule Communicator

International Radio Consultative Committee

command/decoder distributor

designator for "career education course for elementary-grade teachers"

designator for "career education course for secondary-grade teachers"

computer executive system program

coarse/fine Sun sensors
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CIC

CIE

C/L
cm

CM

C/M
CMD

CMOS

C/N o
CNR, C/N

"cntr

Comsat

ConUS,

CONUS

CONV

COSMOS

CPI

CPR

CPU

CRT

CSM

CSP

CSS

CTNE

CW

DA

D/A
DACU

DAF

dB

dBi

dB/K
dBm

dBW

DC
d.c.

DCP

DDDF

DDS

DECPSK

DEG, deg

command interface control

cesium ion engine

capacitance-to-inductance
centimeter

communications module

carrier-to-multipath

command

complimentary metal oxide semiconductor

carrier power to spectral noise density ratio

carrier-to-noise ratio

center

Communications Satellite Corporation
Continental United States

converter

complimentary symmetry metal oxide semiconductor

cross polarization isolation

cross polarization ratio

central processing unit

cathode-ray tube
command-service module

command service program

coarse Sun sensor

Companie Telephonica Nacional de Espana

carrier wave, continuouswave

D

design adequacy

digital to analog

data acquisition and control unit

Data AcquisitionFacility

decibel

decibelisotropic(gainrelativeto an isotropicantenna)

decibelper degreeKelvin

decibelsreferredto 1 milliwatt

decibel(referencelevel1 watt)

downconverter

directcurrent

datacollectionplatforms

duplex digitaldataformatter

digitalSun sensor

differentiallyencoded coherentphase shiftkey (modulated)

degree
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DEM

Depl

DES

DESA

DIB

div

DIX

DJS

DLO

DM

DOC

DOD

DOT

DOT/FAA

DOT/TSC
DPRI

DR

DRR

DRS

DSS

DSU

DTS

DUT

EBU

ECH

ECI

e.d.t., EDT

e.i.r.p.

EME

emi, EMI

EML

enc

Eng.

EOL

EPIRB

EPS

ERP

ES

ESA

ESA/PSA

e.s.t., EST

digital evaluation mode

deployment

Delhi Earth Station

double electrostatic analyzer

data input buffer
division

data interface transmitter

Dzhusaly (designator)

dual local oscillator

docking module

digital operational controller

depth-of-discharge

Department of Transportation

The Department of Transportation/Federal Aviation Administration

The Department of Transportation/Transportation Systems Center

diagnostic and prescriptive reading instruction

Copenhagen (designator)

data recorder/reproducer

direct reception system

digital Sun sensor

data switching unit

data transmission system

Denver Uplink Terminal

E

European Broadcast Union

Earth-coverage horn
Earth centered inertial

eastern daylight time

effective isotropic radiated power

Environmental Measurements Experiments

electromagnetic interference

equivalent monomolecular layer
encoder

engineering

end-of-life

Emergency Position Indicating Radio Beacon

electrical power subsystem

effective radiated power

Earth sensor

Earth sensor assembly, European Space Agency

Earth sensor assembly/Polaris sensor assembly

eastern standard time
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ETR

eV

EVM

EVT

f

F

FAA

FCC

FCHP

FCP

FCT

f/d

FDM

fm, FM

FOV

FOWG

Freq.

FRMS

fsk

FSS

ft

FT

ft-lb

FTO

FTS

g
G

GAC

GEOS_

GFRP

GHz

gm

G.m.t., GMT

GRD

GRP

GSFC

G/T

GTT

GVHRR

Eastern Test Range

electronvolt

Earth-viewing module

Eupatoria (designator)

F

frequency

Fahrenheit

Federal Aviation Administration

Federal Commui_ications Commission

feedback-controlled variable conductance heat pipe

flight computer program

fixed calibration terminal

ratio of focal distance to diameter

frequency diversity modulation; frequency division multi

frequency modulated

field-of-view

Flight Operations Working Group

frequency

Federation of Rocky Mountain States

frequency shift keying

fine Sun sensor

foot, feet

frequency translation

foot-pound

functional test objective

Federal Telecommunications System

G

grams, gravity

gain

ground attitude control

Geodetic Earth-Orbiting Satellite-3

graphite fiber reinforced plastic

gigahertz

gram
Greenwich mean time

ground

group

Goddard Space Flight Center

dB/K antenna gain over system noise temperature

ground transmit terminal

Geosynchronous Very High Resolution Radiometer

91exer
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H

HAC

HDRSS

HET

HEW

hf

HGA

HI

HPBW

HR

HSE

HTR

Hz

Hughes Aircraft Company

high data rate storage system

Health, Education, Telecommunications (experiment)

Department of Health, Education, and Welfare

high frequency

high gain antenna

Honeywell International

half power bandwidth

hour q_

high-speed execute

heater; high-time resolution

hertz

IBM

IDT

IEB

i.f.

IFC

IHS

IHSDL

IM

IMF

IMP

in.

in.-oz

Intelsat

INTF

I/O
IPD

IR

IRAC

ISRO

IT

ITS

ITU

I-V

IW

IZMIRAN

International Business Machines

image dissector tube

interface electronics box

intermediate frequency

in-flight calibration

Indian Health Service (Alaska)

interferometer high speed data link

intermodulation

interplanetary magnetic field

Interplanetary Monitoring Platform

inch

inch-ounce

International Telecommunications Satellite

interferometer

input/output

Information Processing Division w
infrared

Interdepartment Radio Advisory Committee

Indian Space Research Organization

intensive terminal

Institute of Telecommunications Sciences

International Telecommunications Union

current voltage

inertia wheel

Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
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JAM

Joburg

JSC

K

kbps

keV

kg

kHz

km

KSC

kW

lb

LC

LD

LFT

LIC

LLD

LO

LOS

LRIR

LSB

LT

LV

L.V.

m

m 2

mA

Mad

MAD-HYB

Mage

Marad

MASEP

Max.

jet-assist mode

Johannesburg (designator)

Johnson Space Center

K

Kelvin

kilobits per second

kiloelectronvolt

kilogram

kilohertz

kilometer

Kennedy Space Center

kilowatt

L

pound

inductive-capacitance

linear detector

long form test

load interface circuit

lower level discriminator

local oscillator

line-of-sight

limb radiance inversion radiometer

least significant bit

local time

local vertical

latch valve

M

meter

square meter

milliamperes

Madrid

Madrid Hybrid

U.S./U.S.S.R. Magnetometer Experiment

Maritime Administration

main sequential program

maximum
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MCC-H

MCC-M

MDAC

MDHS

MESC

MeV

MHz

/af

tam

/.ts,/asec
MILA

rain, MIN

mlb

MMW

mN

MOCC

MOCR

MONO

MOR

MOS

MSB

ms, msec

m/s

MT

mV

mW

MWE

MW XMTR

Mission Control Center, Houston

Mission Control Center, Moscow

McDonnell-Douglas Aircraft Corporation

meteorological data handling system

magnetoelectrostatic plasma containment

megnelectronvolts

megahertz
micro farad

micrometer (micron)

microsecond

Merritt Island Launch Annex

minute

millipound

Millimeter Wave Experiment

millinewton

Multisatellite Operations Control Center

Mission Operations Control Room

monopulse

Mission Operations Room

metal oxide semiconductor

most significant bit

millisecond

meters per second

multitone

millivolts

milliwatt

Millimeter Wave Experiment

microwave transmitter

N

N

NAFEC"

NASA

Nascom

NBFM

NCC

NCE

NDR

am

NMRC

NOAA

N/P

NRL

Newton

National Aviation Facilities Experiment Center

National Aeronautics and Space Administration
NASA Communications Network

narrowband frequency modulation .

Network Coordination Center

normal command encoder

Hamburg (designator)

nanometer
National Maritime Research Center

National Oceanic and Atmospheric Administration

negative/positive

Naval Research Laboratories
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ns

NTSC

O&M

OC

OCJ

OCP

o.d.

OD

omni

OSR

OSU

OYA

PA

PAL

PAM

PAO

PARAMP

PB

PBS

Pc

pcm, PCM

pcm/fsk/am

PCT

PCU

PDM

pf
PFD

PFF

PGE

PIC

PLACE

PLU

PM

PN

POCC

p-p
PPK

ppm

nanosecond

National Television System Committee color (U.S.)

O

operations and maintenance
orbit control

orbit control jet

operational control program
outside diameter

Operations and Distribution (Center)

omnidirectional

optical solar reflectors

Ohio State University

Helsinki (designator)

P

power amplifier, preamplifier

phase alternation live color (Europe)

pulse amplitude modulated

Public Affairs Office

parametric amplifier

phonetically balanced

Public Broadcasting Service

course phase measurement

pulse code modulation

pulse code modulation/frequency shift keying/amplitude modulation

portable calibration terminal

power control unit

pulse duration modulation

picofarad

power flux density

prime-focus feed

PLACE ground equipment

power interface circuit

Position Location and Aircraft Communications Experiment

Project Look-Up

phase-modulated

pseudo-noise

Project Operations Control Center

peak-to-peak

Petropavlovsk-Kamchatski (designator)

parts per million



280 ATS-6 FINAL ENGINEERING PERFORMANCE REPORT

PR

P.
rgl

P.
r$1

PRU

PSA

PSE
PSK

pW
PWR

Radsta

R&RR

RBE

RCA

RCC

RCV

RDA

REC

Ref., REF
Rel

RESA

rf

RFC

rfi

RFIME

RGA

RME

RMPBN

rms

RMW

ROT

rpm
RR

reference (phase) signal

power received at ground into an isotropic antenna

power received at spacecraft into an isotropic antenna

power regulation unit

Polaris sensor assembly

probability function

phase shift keyed

vernier phase measurement

picowatt

power

Q

Quartz-crystal microbalance contamination monitor

quadrature phase modulation

R

U.S. Coast Guard Radio Station

range and range rate

Radio Beacon Expriment

Radio Corporation of America

Resource Coordinating Center
receive

rotating detector assembly
receive

reference

release

Regional Education Service Agency

radio frequency

radio-frequency compatibility

radio frequency interference

Radio Fequency Interference Measurement Experiment

rate-gyro assembly

Rocky Mountain East

Rocky Mountain Public Broadcast Network

root mean square

Rocky Mountain West

receive-only terminal

revolutions per minute
rain rate
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S/A
•SAPPSAC

SAR

S&R

Satcom

SC

s/c
SCAMA

SCAMP

SE

sec, S

SECAM

SEL

SENS

S.G.

SITE

SITEC

SIU

S-IVB

SMSD

SNR, S/N

Spec
SPS

SPU

sr

SR

SRT

SSC

SSEA

SSR

STA

STADAN

STDN

STRUCT

SWBT

SYN

SYNC

SYSSIM

solar array

Spacecraft Attitude Precision Pointing and Slewing Adaptive Control (Experiment)

search and,'rescue

surveillance and ranging

Satellite Communications

sudden commencement

spacecraft

switching, conferencing, and monitoring arrangement

small command antenna medium power

system effectiveness

second

Sequential Couleurs a Memoire (III) color (U.S.S.R.)

Space Environment Laboratory

sensor

signal generator

Satellite Instructional Television Experiment

sudden increase in total electron content

squib interface unit

Saturn IB second stage

spin motor sync detector

signal-to-noise ratio

specification

spacecraftpropulsionsubsystem

signalprocessing_nit

steradian

Stockholm (designator)

SAPPSAC remote terminal

sudden storm commencement

Sun sensorelectronicsassembly

StaffSupport Room

station

Space Trackingand Data AcquisitionNetwork

SpaceflightTrackingand Data Network

structural

Southwestern BellTelephone Company

synthesizer

synchronous

system simulator
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TACH

T&CS

T&DRE

TART

TASO

TBC

TCD

TCS

TDA

TDRE

TEMP

THIR

TID

TLM, TM

TORQ
TRUST

TSM

TSP

TSU

TT/N

TTY

TV

TVOC

TWT

TWTA

UC

UCLA

UCSD

uhf

UK

UKTV

ulf

UNH

U.S.

USA

USAF

USCG

USK

T

tachometer

telemetry and command subsystem

Tracking and Data Relay Experiment

transmit and receive terminal

Television Allocation Study Organization

time base corrector

transponder command decoder

telemetry and command subsystem, thermal control subsystem

tunnel diode amplifier

Tracking and Data Relay Experiment

temperature

temperature-humidity infrared radiometer

traveling ionospheric disturbances

telemetry

torquer

Television Relay Using Small Terminals

thermal structural model

telemetry service program

temperature (control) and signal (conditioning) unit

test-tone signal-to-noise ratio

teletype

television

Television Operational Control Centers

traveling wave tube

traveling wave tube amplifier

U

upconverter

University of California at Los Angeles

University of California at San Diego

ultrahigh frequency

United Kingdom

University of Kentucky Television

ultralow frequency

University of New Hampshire
United States

ubiquitous spectrum analyzer
United States Air Force

United States Coast Guard

Ussuruisk (designator)
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U.S.S.R.
UT
UV

V

V

VA

VCA

VCHP

VCXO

Vdc

V/deg
Vert.

vhf, VHF

VHRR

VIP

VIRS

VITS

VPI

VS.

VSWR

V/T

VTR

VU MTR

W

WAMI

WBDU

WBVCO

WHL, WH

XMIT

XMTR

XTAL

XTAL DET.

Union of Soviet Socialist Republics

universal time

ultraviolet

V

velocity

volt

Veterans Administration

voltage controlled amplifier

passive "cold-reservoir" variable conductance heat pipe

voltage controlled crystal oscillator
volts direct current

Volts per degree

vertical

very high frequency

very high resolution radiometer

versatile information processor

vertical interval reference signal

vertical interval test signals

Virginia Polytechnic Institute

versus

voltage standing-wave ratio

voltage/temperature

video-tape recorder
VU meter

W

watt

Washington, Alaska, Montana, Idaho (medical education)

Wideband Data Unit

wideband voltage-controlled oscillator
wheel

X

transmit

transmitter

crystal

crystal detector
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YIRU

ZAZ

Zcoel

yaw inertial reference unit

Z-axis azimuth

Z-coelevation

Y

Z
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